1 |
KONG Xiangli, ZHOU Xiaofeng. Effect of the regional differences of urbanization on the consumption structure of rural citizens[J]. Journal of Northwest University (Philosophy and Social Sciences Edition), 2021, 51(3): 54-68.
|
|
孔祥利, 周晓峰. 城镇化率区域差异对农村居民消费结构的影响[J]. 西北大学学报(哲学社会科学版), 2021, 51(3): 54-68.
|
2 |
SAILOR D J, LU L. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas[J]. Atmospheric Environment, 2004, 38(17): 2 737-2 748.
|
3 |
PIGEON G, LEGAIN D, DURAND P, et al. Anthropogenic heat release in an old European agglomeration (Toulouse, France)[J]. International Journal of Climatology, 2007, 27(14): 1 969-1 981.
|
4 |
CHOW W T L, SALAMANCA F, GEORGESCU M, et al. A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes[J]. Atmospheric Environment, 2014, 99: 64-76.
|
5 |
MIRZAEI P A, HAGHIGHAT F. Approaches to study urban heat island-abilities and limitations[J]. Building and Environment, 2010, 45(10): 2 192-2 201.
|
6 |
BOHNENSTENGEL S I, HAMILTON I, DAVIES M, et al. Impact of anthropogenic heat emissions on London’s temperatures[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(679): 687-698.
|
7 |
ZHAO Y, ZHONG L, MA Y M, et al. WRF/UCM simulations of the impacts of urban expansion and future climate change on atmospheric thermal environment in a Chinese megacity[J]. Climatic Change, 2021, 169(3/4): 1-17.
|
8 |
CHEN B, DONG L, LIU X, et al. Exploring the possible effect of anthropogenic heat release due to global energy consumption upon global climate: a climate model study[J]. International Journal of Climatology, 2016, 36(15): 4 790-4 796.
|
9 |
NIE W S, ZAITCHIK B F, NI G H, et al. Impacts of anthropogenic heat on summertime rainfall in Beijing[J]. Journal of Hydrometeorology, 2017, 18(3): 693-712.
|
10 |
ZHANG W, VILLARINI G, VECCHI G A, et al. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston[J]. Nature, 2018, 563(7 731): 384-388.
|
11 |
CHEN Y, JIANG W M, ZHANG N, et al. Numerical simulation of the anthropogenic heat effect on urban boundary layer structure[J]. Theoretical and Applied Climatology, 2009, 97(1/2): 123-134.
|
12 |
MENG C, JIANG L, JIN H, et al. Impact of anthropogenic heat on surface balance of energy and water in Beijing[J]. Russian Meteorology and Hydrology, 2020, 45(6): 438-446.
|
13 |
ZHANG G J, CAI M, HU A. Energy consumption and the unexplained winter warming over northern Asia and North America[J]. Nature Climate Change, 2013, 3(5): 466-470.
|
14 |
FLANNER M G. Integrating anthropogenic heat flux with global climate models[J]. Geophysical Research Letters, 2009, 36(2): L02801.
|
15 |
LIU B, XIE Z H, QIN P H, et al. Increases in anthropogenic heat release from energy consumption lead to more frequent extreme heat events in urban cities[J]. Advances in Atmospheric Sciences, 2021, 38(3): 430-445.
|
16 |
PERKINS S E, LEWIS S C, KING A D, et al. Increased simulated risk of the hot Australian summer of 2012/13 due to anthropogenic activity as measured by heat wave frequency and intensity[J]. Bulletin of the American Meteorological Society, 2014, 95(9): S34-S37.
|
17 |
CHEN Huopo, SUN Jianqi. Anthropogenic influence has increased climate extreme occurrence over China[J]. Science Bulletin, 2021, 66(8): 749-752.
|
|
陈活泼, 孙建奇. 人类活动加剧中国极端气候变化[J]. 科学通报, 2021, 66(8): 749-752.
|
18 |
SAILOR D J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment[J]. International Journal of Climatology, 2011, 31(2): 189-199.
|
19 |
CAO Z, WEN Y, SONG S, et al. Spatiotemporal variations and controls on anthropogenic heat fluxes in 12 selected cities in the eastern China[J]. Chinese Geographical Science, 2021, 31(3): 444-458.
|
20 |
CHEN Q, YANG X C, OUYANG Z T, et al. Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data[J]. Environmental Pollution, 2020, 266(Pt. 1): 115183.
|
21 |
LU Y, WANG Q G, ZHANG Y Y, et al. An estimate of anthropogenic heat emissions in China[J]. International Journal of Climatology, 2016, 36(3): 1 134-1 142.
|
22 |
LIN Z L, XU H Q. Anthropogenic heat flux estimation based on Luojia 1-01 new nighttime light data: a case study of Jiangsu Province, China[J]. Remote Sensing, 2020, 12(22): 3707.
|
23 |
NIE W S, SUN T, NI G H. Spatiotemporal characteristics of anthropogenic heat in an urban environment: a case study of Tsinghua campus[J]. Building and Environment, 2014, 82: 675-686.
|
24 |
ZHOU Y Y, WENG Q H, GURNEY K R, et al. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 65-72.
|
25 |
ZHENG Y F, WENG Q H. High spatial- and temporal-resolution anthropogenic heat discharge estimation in Los Angeles County, California[J]. Journal of Environmental Management, 2018, 206: 1 274-1 286.
|
26 |
KATO S, YAMAGUCHI Y. Analysis of urban heat-island effect using ASTER and ETM+ data: separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux[J]. Remote Sensing of Environment, 2005, 99(1/2): 44-54.
|
27 |
OKE T R. The urban energy balance[J]. Progress in Physical Geography: Earth and Environment, 1988, 12(4): 471-508.
|
28 |
HU D Y, YANG L M, ZHOU J, et al. Estimation of urban energy heat flux and anthropogenic heat discharge using aster image and meteorological data: case study in Beijing metropolitan area[J]. Journal of Applied Remote Sensing, 2012, 6(1): 3559.
|
29 |
WONG M S, YANG J X, NICHOL J, et al. Modeling of anthropogenic heat flux using HJ-1B Chinese small satellite image: a study of heterogeneous urbanized areas in Hong Kong[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1 466-1 470.
|
30 |
LIU Jiahui, ZHAO Xiaofeng, LIN Jianyi. Analysis of anthropogenic heat discharge of urban functional regions based on surface energy balance in Xiamen Island[J]. Journal of Geo-Information Science, 2018, 20(7): 1 026-1 036.
|
|
刘嘉慧, 赵小锋, 林剑艺. 基于地表能量平衡的厦门岛城市功能区人为热排放分析[J]. 地球信息科学学报, 2018, 20(7): 1 026-1 036.
|
31 |
SIVAK M. Air conditioning versus heating: climate control is more energy demanding in Minneapolis than in Miami[J]. Environmental Research Letters, 2013, 8(1): 014050.
|
32 |
CHEN S S, HU D Y. Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data[J]. Remote Sensing, 2017, 9(11): 1165.
|
33 |
GONG P, CHEN B, LI X C, et al. Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018[J]. Science Bulletin, 2020, 65(3): 182-187.
|
34 |
Hefei Bureau of Statistics. Hefei statistical bulletin on national economic and social development in 2021[EB/OL]. [2022-04-22]. .
|
|
合肥市统计局. 合肥市2021年国民经济和社会发展统计公报[EB/OL]. [2022-04-22]. .
|
35 |
Hefei Municipal People’s Government. Overview of Hefei [EB/OL]. [2021-04-22]. .
|
|
合肥市人民政府网. 合肥概况[EB/OL]. [2021-04-22]. .
|
36 |
LI Xiali. Study on the impact of urbanization on climate change in Hefei[D]. Hefei: Anhui Agricultural University, 2015.
|
|
李侠丽. 城市化对合肥地区气候变化的影响研究[D]. 合肥:安徽农业大学, 2015.
|
37 |
YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3 907-3 925.
|
38 |
LIANG S L. Narrowband to broadband conversions of land surface albedo I: algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.
|
39 |
QIN Zhihao, LI Wenjuan, XU Bin, et al. The estimation of land surface emissivity for landsat TM6[J]. Remote Sensing for Land & Resources, 2004, 16(3): 28-32, 36, 41.
|
|
覃志豪, 李文娟, 徐斌, 等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感, 2004, 16(3): 28-32, 36, 41.
|
40 |
CARLSON T N, RIPLEY D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3): 241-252.
|
41 |
DU C, REN H Z, QIN Q M, et al. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data[J]. Remote Sensing, 2015, 7(1): 647-665.
|
42 |
SONG Ting, DUAN Zheng, LIU Junzhi, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite[J]. Journal of Remote Sensing, 2015, 19(3): 451-464.
|
|
宋挺, 段峥, 刘军志, 等. Landsat 8数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3): 451-464.
|
43 |
PRATA A J. A new long-wave formula for estimating downward clear-sky radiation at the surface[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(533): 1 127-1 151.
|
44 |
ZHONG Lei, GE Nan, MA Yaoming, et al. Estimation of land surface latent heat flux over the Tibetan Plateau using geostationary satellite data[J]. Advances in Earth Science, 2021, 36(8): 773-784.
|
|
仲雷, 葛楠, 马耀明, 等. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
|
45 |
PENG T, SUN C G, FENG S S, et al. Temporal and spatial variation of anthropogenic heat in the central urban area: a case study of Guangzhou, China[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 160.
|
46 |
SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-99.
|
47 |
CHEN X L, SU Z B, MA Y M, et al. An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau[J]. Journal of Applied Meteorology and Climatology, 2013, 52(3): 607-622.
|
48 |
MU Q Z, HEINSCH F A, ZHAO M S, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4): 519-536.
|
49 |
MU Q Z, ZHAO M S, RUNNING S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1 781-1 800.
|
50 |
ZHANG Yu. Quantitative remote sensing estimation of urban surface evapotranspiration based on a modified Penman-Monteith model[D]. Xuzhou: China University of Mining and Technology, 2018.
|
|
张宇. 基于改进Penman-Monteith模型的城市地表蒸散发定量遥感估算研究[D]. 徐州:中国矿业大学, 2018.
|
51 |
FISHER J B, DEBIASE T A, QI Y, et al. Evapotranspiration models compared on a Sierra Nevada forest ecosystem[J]. Environmental Modelling & Software, 2005, 20(6): 783-796.
|
52 |
WANG F, QIN Z H, SONG C Y, et al. An improved mono-window algorithm for land surface temperature retrieval from landsat 8 thermal infrared sensor data[J]. Remote Sensing, 2015, 7(4): 4 268-4 289.
|
53 |
COLL C, GALVE J M, SANCHEZ J M, et al. Validation of landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 547-555.
|
54 |
JIMÉNEZ-MUÑOZ J C, SOBRINO J A, SKOKOVIĆ D, et al. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1 840-1 843.
|
55 |
YU X L, GUO X L, WU Z C. Land surface temperature retrieval from Landsat 8 TIRS—comparison between radiative transfer equation-based method, split window algorithm and single channel method[J]. Remote Sensing, 2014, 6(10): 9 829-9 852.
|
56 |
JIN M J, LI J M, WANG C L, et al. A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China[J]. Remote Sensing, 2015, 7(4): 4 371-4 390.
|
57 |
HAN C B, MA Y M, CHEN X L, et al. Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data[J]. Atmospheric Research, 2016, 168: 180-190.
|
58 |
SWINBANK W C. Long-wave radiation from clear skies[J]. Quarterly Journal of the Royal Meteorological Society, 1963, 89(381): 339-348.
|
59 |
IDSO S B, JACKSON R D. Thermal radiation from the atmosphere[J]. Journal of Geophysical Research, 1969, 74(23): 5 397-5 403.
|
60 |
BRUTSAERT W. Derivable formula for long-wave radiation from clear skies[J]. Water Resources Research, 1975, 11(5): 742-744.
|
61 |
IDSO S B. A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies[J]. Water Resources Research, 1981, 17(2): 295-304.
|