地球科学进展 ›› 2022, Vol. 37 ›› Issue (11): 1101 -1114. doi: 10.11867/j.issn.1001-8166.2022.084

院士论坛    下一篇

基于碳氮循环的中蒙荒漠生态脆弱区生态系统对全球变化响应研究
冯起( ), 常宗强, 席海洋, 苏永红, 温小虎, 朱猛, 张举涛, 张成琦   
  1. 中国科学院西北生态环境资源研究院,内陆河流域生态水文重点实验室/ 甘肃省祁连山生态环境研究中心,甘肃 兰州 730000
  • 收稿日期:2022-06-20 修回日期:2022-08-29 出版日期:2022-11-10
  • 基金资助:
    国家自然科学基金项目“变环境条件下内陆河流域生态系统与水文过程耦合模拟”(52179026);中国工程院战略研究与咨询项目“祁连山国家公园生态环境演变与可持续发展模式研究”(2022-XY-24)

Response to Global Change in the Ecologically Fragile and Desert Region of China-Mongolia Based on Carbon and Nitrogen Cycles

Qi FENG( ), Zongqiang CHANG, Haiyang XI, Yonghong SU, Xiaohu WEN, Meng ZHU, Jutao ZHANG, Chengqi ZHANG   

  1. Key Laboratory of Ecohydrology of Inland River Basin/Qilian Mountains Eco-environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2022-06-20 Revised:2022-08-29 Online:2022-11-10 Published:2022-11-16
  • About author:FENG Qi (1966-), male, Yulin City, Shaanxi Province, Academician of Chinese Academy of Engineering. Research areas include hydrology, water resources and environment in arid regions. E-mail: qifeng@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Coupled simulation of inland river basin ecosystem and hydrological process under variable environment”(52179026);Strategic Research and Consulting Project of the Chinese Academy of Engineering “Ecological environment evolution and sustainable development model of Qilian Mountain National Park”(2022-XY-24)

中国与蒙古国均是全球生态脆弱区分布面积最大、脆弱生态类型最多、生态脆弱性表现最明显的国家。中国和蒙古国生态脆弱区生态环境状况制约着区域生态和社会经济的可持续发展,对中国和蒙古国生态安全至关重要。因此,深入研究中国和蒙古国生态脆弱区生态系统的特征及其对全球变化的响应机理,为区域的生态环境恢复提供科学依据,是我国生态安全的需要。以碳氮循环为切入点,关注中国和蒙古国脆弱生态系统在全球变化背景下的响应,提出并综述了脆弱生态系统碳氮循环过程及耦合机制、全球变化对脆弱生态系统的影响、全球变化背景下脆弱生态系统安全阈值确定及风险评估、脆弱生态系统对全球变化的适应性管理等重点研究任务。认为面向我国生态安全的重大需求,亟需从以下方面展开研究:系统分析碳氮在水—土—气—生中的周转途径、形态转化及通量特征的年际、季节及昼夜特征,揭示脆弱生态系统碳氮循环过程、时空规律与耦合机制,回答脆弱系统碳氮汇功能发挥的主要机理;构建脆弱生态系统碳氮耦合的过程模型,定量分析不同气候变化强度对脆弱生态系统安全的影响程度和人类干扰对碳氮循环及其生态系统的影响,评估脆弱生态系统在地球系统碳氮循环中的作用及其碳氮的源汇效应,提出脆弱生态系统对全球变化的适应性管理对策和措施。

The ecologically fragile region in China and Mongolia is among the regions with the largest distribution area, the largest type of fragile ecology, and the most evident ecological vulnerability. The ecological environment condition in the ecologically fragile areas of China and Mongolia restricts the sustainable development of regional ecology and social economy, and is crucial to the ecological security of China and Mongolia. Thus, it is urgently necessary to thoroughly explore the characteristics of ecologically fragile ecosystems in China and Mongolia and their response mechanisms to global changes, which can provide a scientific basis for regional ecological environmental restoration. Based on the carbon and nitrogen cycles of fragile ecosystems affected by global change, this study presents and summarizes the following key research topics: fragile ecosystem carbon and nitrogen cycles and coupling mechanisms, the influence of global change on fragile ecosystems, fragile ecosystem safety threshold identification and risk assessment under the background of global change, and the adaptive management of fragile ecosystems to global change. In view of the national major needs of ecological safety, researches in the following aspects are urgently needed: analyzing the annual, seasonal, and diurnal characteristics of nitrogen turnover pathways, transformation form, and flux in water-soil-gas-biomass systematically to reveal the carbon and nitrogen cycling process, spatio-temporal law, and coupling mechanism of fragile ecosystems and determine the primary mechanism of the carbon and nitrogen sink function in fragile ecosystems. Building a carbon and nitrogen coupling model in fragile ecosystems, quantifying the influence strength of different intensities of climate change on fragile ecosystem safety and the influence of human disturbance on the carbon and nitrogen cycle and its ecological system, assessing the effect of fragile ecological systems on the carbon and nitrogen cycle in the Earth system and its carbon and nitrogen source-sink effect, and proposing management countermeasures and measures of fragile ecosystems to global change.

中图分类号: 

图1 中蒙荒漠生态脆弱区地理位置
Fig. 1 Geographical location of the fragile ecological and desert region of China and Mongolia
图2 基于碳氮循环的中蒙荒漠生态脆弱区生态系统对全球变化响应研究框架
Fig. 2 Research frame of the response to global change in the fragile ecological and desert region of China-Mongolia based on carbon and nitrogen cycle
图3 中蒙脆弱生态系统碳氮循环过程及耦合机制研究框架
Fig. 3 Research frame of carbon and nitrogen cycling process and coupling mechanism in fragile ecosystems of China and Mongolia
图4 全球变化对脆弱生态系统碳氮循环的影响研究框架
Fig. 4 Research frame of the effects of global change on carbon and nitrogen cycling in fragile ecosystems
图5 脆弱生态系统对全球变化的适应性管理研究框架
Fig. 5 Research frame of the adaptive management of fragile ecosystems to global change
1 QIN Dahe, THOMAS S,259 Authors and TSU (Bern & Beijing). Highlights of the IPCC working group I fifth assessment report[J]. Climate Change Research,2014,10(1):1-6.
秦大河,Thomas Stocker,259名作者和TSU(驻伯尔尼和北京). IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展,2014,10(1):1-6.
2 MIGUEL B G, MANUEL D B, HERNÁNDEZ-CLEMENTE S R, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020, 367(6 479): 787-790.
3 SCHIMEL D S. Drylands in the Earth system[J]. Science, 2010, 327: 418-419.
4 CARVAJAL D E, LOAYZA A P, RIOS R S, et al. A hyper-arid environment shapes an inverse pattern of the fast-slow plant economics spectrum for above-, but not below-ground resource acquisition strategies[J]. Journal of Ecology, 2019, 107(3): 1 079-1 092.
5 SEDDON A W R, MACIAS-FAURIA M, LONG P R, et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature, 2016, 531: 229-232.
6 GAO Y, ZHOU J, WANG L M, et al. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China[J]. Global Ecology and Conservation, 2019, 17. DOI:10.1016/j.gecco.2019.e00575 .
7 LIU K L, HUANG J, LI D M, et al. Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China[J]. Journal of Integrative Agriculture, 2019, 18(6): 1 348-1 359.
8 MEERSMANS J, van WESEMAEL B, de RIDDER F, et al. Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960-2006[J]. Global Change Biology, 2009, 15(11): 2 739-2 750.
9 MENG W Q, FEAGIN R A, HU B B, et al. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuarine, Coastal and Shelf Science, 2019, 222: 13-20.
10 BONNER M T L, HERBOHN J, GREGORIO N, et al. Soil organic carbon recovery in tropical tree plantations may depend on restoration of soil microbial composition and function[J]. Geoderma, 2019, 353: 70-80.
11 QI Zewei, LIU Caixia, LI Nana, et al. Effects of different tillage methods on soil organic carbon stock in maize fields in Jinzhong[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 233-237.
祁泽伟, 刘彩霞, 李娜娜, 等. 耕作方式对晋中玉米田土壤有机碳储量的影响[J]. 山西农业科学, 2020, 48(2): 233-237.
12 LUO Wei, ZHANG Huihua, CHEN Junjian, et al. Storage and spatial distribution of soil organic carbon in Guangdong Province, China[J]. Ecology and Environmental Sciences, 2018, 27(9): 1 593-1 601.
罗薇, 张会化, 陈俊坚, 等. 广东省土壤有机碳储量及分布特征[J]. 生态环境学报, 2018, 27(9): 1 593-1 601.
13 DUAN Z H, XIAO H L, DONG Z B, et al. Estimate of total CO2 output from desertified sandy land in China[J]. Atmospheric Environment, 2001, 35(34): 5 915-5 921.
14 NIU Y Y, LI Y Q, YUN H B, et al. Variations in diurnal and seasonal net ecosystem carbon dioxide exchange in a semiarid sandy grassland ecosystem in China’s Horqin Sandy Land[J]. Biogeosciences, 2020, 17(24): 6 309-6 326.
15 CHAI Zhongping, WANG Xuemei, JIA Hongtao, et al. Study on relations between CO2 source/sink of winter wheat ecosystem in oasis at arid region[J]. Xinjiang Agricultural Sciences, 2008, 45(6): 986-989.
柴仲平, 王雪梅, 贾宏涛, 等. 干旱区绿洲冬小麦生态系统CO2源/汇关系研究[J]. 新疆农业科学, 2008, 45(6): 986-989.
16 WANG Y Y, WANG H, HE J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland[J]. Nature Communication, 2017, 8: 15 972-15 972.
17 CHEN L T, JING X, FLYNN D F B, et al. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes[J]. Geoderma, 2017, 288: 166-174.
18 SUN H M, JIANG J, CUI L N, et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems[J]. The Science of the Total Environment, 2019, 673: 502-510.
19 Keyu FA, LEI Guangchun, ZHANG Yuqing, et al. Carbon exchange process between atmosphere and soil in desert soils[J]. Advances in Earth Science, 2018, 33(5): 464-472.
法科宇, 雷光春, 张宇清, 等. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
20 BAI Yongfei, CHEN Shiping. Carbon sequestration of Chinese grassland ecosystems: stock, rate and potential[J]. Chinese Journal of Plant Ecology, 2018, 42(3): 261-264.
白永飞, 陈世苹. 中国草地生态系统固碳现状、速率和潜力研究[J]. 植物生态学报, 2018, 42(3): 261-264.
21 MARCÉ R, OBRADOR B, GÓMEZ-GENER L, et al. Emissions from dry inland waters are a blind spot in the global carbon cycle[J]. Earth-Science Reviews, 2019, 188: 240-248.
22 LIU Z, ZHANG Y Q, FA K Y, et al. Rainfall pulses modify soil carbon emission in a semiarid desert[J]. CATENA, 2017, 155: 147-155.
23 LEI Na, ZHANG Yang, LIU Zhe,et al. The effects of landuse change on soil organic carbon storage[C]// Editorial Board of Environmental Engineering. Proceedings of the 2018 national annual conference on environmental engineering (Vol.2). Beijing: Industrial Construction Magazine Co., LTD, 2018: 9.
雷娜,张扬,刘哲,等. 土地利用变化对土壤有机碳储量的影响[C]//《环境工程》编委会. 《环境工程》2018年全国学术年会论文集(下册). 北京:工业建筑杂志社有限公司, 2018: 9.
24 HU Y G, ZHANG Z H, WANG Q, et al. Variations of N2O fluxes in response to warming and cooling in an alpine meadow on the Tibetan Plateau[J]. Climatic Change, 2017, 143(1/2): 129-142.
25 WANG X Y, LI Y Q, GONG X W, et al. Changes of soil organic carbon stocks from the 1980s to 2018 in northern China’s agro-pastoral ecotone[J]. CATENA, 2020, 194: 104722.
26 LI S L, GURMESA G A, ZHU W X, et al. Fate of atmospherically deposited NH 4 + and NO 3 - in two temperate forests in China: temporal pattern and redistribution[J]. Ecological Applications: a Publication of the Ecological Society of America, 2019, 29(6). DOI:10.1002/eap.1920 .
27 LI Y Q, WANG X Y, NIU Y Y, et al. Spatial distribution of soil organic carbon in the ecologically fragile Horqin Grassland of northeastern China[J]. Geoderma, 2018, 325: 102-109.
28 WANG Xingxing, LIU Weiwei, Guotao LÜ, et al. Seasonal variation and long-term trend of atmospheric methane concentration in northwest desert of China[J]. Chinese Science Bulletin, 1989(9): 684-686.
王星星, 刘卫卫, 吕国涛, 等. 我国西北部沙漠地区大气甲烷浓度的季节变化和长期变化趋势[J]. 科学通报, 1989(9): 684-686.
29 WANG X Y, LI Y Q, GONG X W, et al. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China[J]. Geoderma, 2019, 343: 155-165.
30 WANG Y Y, DENG L, WU G L, et al. Estimates of carbon storage in grassland ecosystems on the Loess Plateau[J]. CATENA, 2018, 164: 23-31.
31 IPCC. Meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi model climate projections[C]// STOCKER T F, QIN D H, PLATTNER G K, et al. IPCC working group I technical support unit, University of Bern. Bern, Switzerland, 2010:117.
32 ZHAO Y C, WANG M Y, HU S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. PNAS, 2018, 115(16): 4 045-4 050.
33 ABDALLA M, HASTINGS A, CHADWICK D R, et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands[J]. Agriculture, Ecosystems & Environment, 2018, 253: 62-81.
34 LI C Y, LAI C M, PENG F, et al. Dominant plant functional group determine the response of the temporal stability of plant community biomass to 9-year warming on the Qinghai-Tibetan Plateau[J]. Frontiers in Plant Science, 2021, 12: 704138.
35 ZHANG J, CAI Z, MÜLLER C. Terrestrial N cycling associated with climate and plant-specific N preferences: a review[J]. European Journal of Soil Science, 2018, 69(3): 488-501.
36 ZHU Q, CASTELLANO M J, YANG G S. Coupling soil water processes and the nitrogen cycle across spatial scales: potentials, bottlenecks and solutions[J]. Earth-Science Reviews, 2018, 187: 248-258.
37 SAHA D, RAU B M, KAYE J P, et al. Landscape control of nitrous oxide emissions during the transition from conservation reserve program to perennial grasses for bioenergy[J]. GCB Bioenergy, 2017, 9(4): 783-795.
38 YAO Z Y, ZHANG D B, YAO P W, et al. Coupling life-cycle assessment and the RothC model to estimate the carbon footprint of green manure-based wheat production in China[J]. Science of the Total Environment, 2017, 607/608: 433-442.
39 HUANG Wen. Impacts of climate change on typical ecohydrological variables in the upper-middle reaches of Heihe River Basin[D]. Beijing: China University of Geosciences(Beijing), 2018.
黄文. 黑河流域上中游地区典型生态水文要素对气候变化的响应[D]. 北京:中国地质大学(北京), 2018.
40 LEI Yu. Impact of climate change on ecological environment and ecological water requirement in the Yellow River Basin[J]. Water Conservancy Science and Technology and Economy, 2018, 24(8): 31-37.
雷雨. 气候变化对黄河流域生态环境影响及生态需水研究[J]. 水利科技与经济, 2018, 24(8): 31-37.
41 WU Xiaoquan, WANG Ranghui, LI Cheng, et al. Spatial-temporal characteristics of NPP and its response to climatic factors in Tianshan Mountains region[J]. Ecology and Environmental Sciences, 2016, 25(11): 1 848-1 855.
吴晓全, 王让会, 李成, 等. 天山植被NPP时空特征及其对气候要素的响应[J]. 生态环境学报, 2016, 25(11): 1 848-1 855.
42 BAI Xiaolan, WEI Jiahua, XIE Hongwei. Characteristics of wetness/dryness variation and their influences in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2017, 37(24): 8 397-8 410.
白晓兰, 魏加华, 解宏伟. 三江源区干湿变化特征及其影响[J]. 生态学报, 2017, 37(24): 8 397-8 410.
43 QIN Dahe, et al. Climate and environment changes in China[M]. Beijing: China Meteorological Press, 2012: 336.
秦大河, 等. 中国气候与环境演变[M]. 北京:气象出版社, 2012: 336.
44 YAO Junqiang, YANG Qing, CHEN Yaning, et al. Climate change in arid areas of northwest China in past 50 years and its effects on the local ecological environment[J]. Chinese Journal of Ecology, 2013, 32(5): 1 283-1 291.
姚俊强, 杨青, 陈亚宁, 等. 西北干旱区气候变化及其对生态环境影响[J]. 生态学杂志, 2013, 32(5): 1 283-1 291.
45 SHI Yafeng, SHEN Yongping, HU Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China[J]. Journal of Glaciolgy and Geocryology, 2002, 24(3): 219-226.
施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
46 SHI Yafeng, SHEN Yongping, LI Dongliang, et al. Discussion on the present climate change from warm-dry to warm-wet in northwest China[J]. Quaternary Sciences, 2003, 23(2): 152-164.
施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
47 ZHENG Ran, LI Dongliang, JIANG Yuanchun. New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J]. Plateau Meteorology, 2015, 34(6): 1 531-1 539.
郑然, 李栋梁, 蒋元春. 全球变暖背景下青藏高原气温变化的新特征[J]. 高原气象, 2015, 34(6): 1 531-1 539.
48 HE Ze, HE Yuanqing, WANG Shijin, et al. Reconstruction and comparative analysis of dry/wet series during 1470-2008 in northwest China[J]. Journal of Desert Research, 2016, 36(5): 1 278-1 285.
何则, 何元庆, 王世金, 等. 基于历史文献的1470—2008年中国西北地区气候干湿序列分区重建[J]. 中国沙漠, 2016, 36(5): 1 278-1 285.
49 ZHANG Qiang, HAN Lanying, HAO Xiaocui, et al. On the impact of the climate change on the agricultural disaster loss caused by drought in China and the regional differences between the north and the south[J]. Acta Meteorologica Sinica, 2015, 73(6): 1 092-1 103.
张强, 韩兰英, 郝小翠, 等. 气候变化对中国农业旱灾损失率的影响及其南北区域差异性[J]. 气象学报, 2015, 73(6): 1 092-1 103.
50 ZHANG S, ZHENG X, CHEN J M, et al. A global carbon assimilation system using a modified ensemble Kalman filter[J]. Geoscientific Model Development, 2015, 8(3): 805-816.
51 BROECKX L S, VERLINDEN M S, BERHONGARAY G, et al. The effect of a dry spring on seasonal carbon allocation and vegetation dynamics in a poplar bioenergy plantation[J]. GCB Bioenergy, 2014, 6(5): 473-487.
52 HUANG J, YU H, GUAN X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Chang, 2016, 6(2): 166-171.
53 BERDUGO M, KÉFI S, SOLIVERES S, et al. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands[J]. Nature Ecology & Evolution, 2017, 1(2): 3.
54 Longjun CI, YANG Xiaohui. Desertification and its control in China[M]. Beijing: Higher Education Press, 2005: 513.
慈龙骏, 杨晓晖. 中国的荒漠化及其防治[M]. 北京:高等教育出版社, 2005: 513.
55 CAO J J, WANG H R, HOLDEN N M, et al. Soil properties and microbiome of annual and perennial cultivated grasslands on the Qinghai-Tibetan Plateau[J]. Land Degradation & Development, 2021, 32(18): 5 306-5 321.
56 CAO J, GONG Y, YEH E T, et al. Impact of grassland contract policy on soil organic carbon losses from alpine grassland on the Qinghai-Tibetan Plateau[J]. Soil Use and Management, 2017, 33(4): 663-671.
57 YANG Y H. Ecological processes in alpine ecosystems under changing environment[J]. Chinese Journal of Plant Ecology, 2018, 42(1): 1-5.
58 CAO Xujuan. Grassland degradation and its response to climate change in the Qinghai-Tibet Plateau[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
曹旭娟. 青藏高原草地退化及其对气候变化的响应[D]. 北京: 中国农业科学院, 2017.
59 JIANG Dabang, FU Yuanhai. Climate change over China with a 2 ℃ global warming[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(2): 234-246.
姜大膀, 富元海. 2 ℃全球变暖背景下中国未来气候变化预估[J]. 大气科学, 2012, 36(2): 234-246.
60 WANG Y Y, ZHANG Y Q, CHIEW F H S, et al. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau[J]. Scientific Reports, 2017, 7(1): 1-7.
61 WANG T, ZHAO Y T, XU C Y, et al. Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets[J]. Nature Climate Change, 2021, 11(3): 219-225.
62 SHI Yuzhong. Research overview on adaptation and adaptive capacity in the global change[J]. Ground Water, 2013, 35(2): 194-196.
石育中. 全球变化视角下适应性与适应能力研究综述[J]. 地下水, 2013, 35(2): 194-196.
63 IPCC Climate Change. Impacts, adaptations and vulnerability [C]//Fourth assessment report of working group II. Cambridge, UK: Cambridge University Press, 2007.
64 YI K, MENG J, YANG H Z, et al. The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers[J]. Nature Communications, 2019, 10(1): 1-9.
65 TURNER B L, KASPERSON R E, MATSON P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Science of the USA, 2003, 100(14): 8 074-8 079.
66 WISNER B, BLAIKIE P, CANNON T, et al. At risk[M]. London: Routledge, 2004.
67 ADGER W N, ARNELL N W, TOMPKINS E L. Successful adaptation to climate change across scales[J]. Global Environmental Change, 2005, 15(2): 77-86.
68 SHI Peijun, LI Ning, YE Qian, et al. Research on global environmental change and integrated disaster risk governance[J]. Advances in Earth Science, 2009, 24(4): 428-435.
史培军, 李宁, 叶谦, 等. 全球环境变化与综合灾害风险防范研究[J]. 地球科学进展, 2009, 24(4): 428-435.
69 CUI Shenghui, LI Xuanqi, LI Yang, et al. Review on adaptation in the perspective of global change[J]. Progress in Geography, 2011, 30(9): 1 088-1 098.
崔胜辉, 李旋旗, 李扬, 等. 全球变化背景下的适应性研究综述[J]. 地理科学进展, 2011, 30(9): 1 088-1 098.
70 LI He, ZHANG Pingyu. Research progress and prospective applications of vulnerability approach under global change[J]. Progress in Geography, 2011, 30(7): 920-929.
李鹤, 张平宇. 全球变化背景下脆弱性研究进展与应用展望[J]. 地理科学进展, 2011, 30(7): 920-929.
71 GAO Y, YU G R, YANG T T, et al. New insight into global blue carbon estimation under human activity in land-sea interaction area: a case study of China[J]. Earth-Science Reviews, 2016, 159: 36-46.
72 LI J, HE N P, WEI X H, et al. Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet Plateau grasslands[J]. PLoS ONE, 2015, 10(7): e0132795.
73 LIU Y, HE N P, WEN X F, et al. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems[J]. Agriculture, Ecosystems & Environment, 2016, 215: 40-46.
74 WANG H M, WANG W J, CHEN H F, et al. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance[J]. Ecology and Evolution, 2014, 4(7): 1 039-1 048.
75 FANG Jingyun, YANG Yuanhe, MA Wenhong, et al. Ecosystem carbon stocks and their changes in China’s grasslands[J]. Scientia Sinica(Vitae), 2010, 53(7): 757-765.
方精云, 杨元合, 马文红, 等. 中国草地生态系统碳库及其变化[J]. 中国科学: 生命科学, 2010, 40(7): 566-576.
76 YU Guirui, GAO Yang, WANG Qiufeng, et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 1-13.
于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1): 1-13.
77 LIOUBIMTSEVA E, HENEBRY G M. Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations[J]. Journal of Arid Environments, 2009, 73(11): 963-977.
[1] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[2] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[3] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[4] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[5] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[6] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[7] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[8] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[9] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[10] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[11] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[12] WuGuoxiong, LinHai, ZouXiaolei, LiuBoqi, HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[13] 周广胜,何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27(5): 563-572.
[14] 张俊辉,夏敦胜,张英,刘宇航. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展, 2012, 27(1): 42-51.
[15] 陈仁升,韩春坛. 高山寒漠带水文、生态和气候意义及其研究进展[J]. 地球科学进展, 2010, 25(3): 255-263.
阅读次数
全文


摘要