地球科学进展 ›› 2020, Vol. 35 ›› Issue (7): 715 -730. doi: 10.11867/j.issn.1001-8166.2020.060

研究论文 上一篇    下一篇

GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究
高丽 1( ),任鹏飞 2,周放 3,郑嘉雯 4,任宏利 2( )   
  1. 1.国家气象中心,中国气象局数值预报中心,北京 100081
    2.中国气象科学研究院,灾害天气国家重点 实验室,北京 100081
    3.中国科学院大气物理研究所,竺可桢—南森国际研究中心,北京 100029
    4.广东省气象局,广州市气象台,广东 广州 511430
  • 收稿日期:2020-05-31 修回日期:2020-06-30 出版日期:2020-07-10
  • 通讯作者: 任宏利 E-mail:gaol@cma.gov.cn;renhl@cma.gov.cn
  • 基金资助:
    国家重点研发计划项目“冬奥中短期精细数值天气预报技术应用研发”(2018YFF0300103);国家自然科学基金项目“我国极端温度事件的中期天气可预报性和集合概率预报方法研究”(41875138)

Evaluations and Ensemble Approaches of Western-Pacific Subtropical High and South-Asian High Ensemble Forecasting in GRAPES-GEPS

Li Gao 1( ),Pengfei Ren 2,Fang Zhou 3,Jiawen Zheng 4,Hongli Ren 2( )   

  1. 1.Numerical Weather Prediction Center of CMA, National Meteorological Center, Beijing 100081,China
    2.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081,China
    3.Climate Change Research Center, Institute of Atmospheric Physics, and Nansen-Zhu International Research Centre, Chinese Academy of Sciences, Beijing 100029,China
    4.Guangzhou Meteorological Service, Guangdong Province Meteorological Bureau, Guangzhou 511430,China
  • Received:2020-05-31 Revised:2020-06-30 Online:2020-07-10 Published:2020-08-21
  • Contact: Hongli Ren E-mail:gaol@cma.gov.cn;renhl@cma.gov.cn
  • About author:Gao Li (1978-), female, Alashan Zuoqi, Inner Mongolia Autonomous Region, Senior engineer. Research areas include weather dynamics and ensemble forecast. E-mail: gaol@cma.gov.cn
  • Supported by:
    the National Key Research and Development Program of China "Research and development of short-medium-range numerical weather forecasting techniques and their applications to the 2022 Olympic Winter Games"(2018YFF0300103);The National Natural Science Foundation of China "Medium-range weather predictability and ensemble-based probabilistic forecasting method of extreme temperature event in China"(41875138)

西太平洋副热带高压和南亚高压对东亚区域天气气候影响显著,运用数值模式集合系统提升其预报准确率对我国天气预报意义重大。采用国家级气象业务规范指标,系统地评估了中国气象局数值预报中心自主研发的GRAPES全球集合预报业务模式系统对2019年西太平洋副热带高压和南亚高压的集合预报技巧,并考察了不同集合方法对预报效果的影响,从而为东亚天气特别是极端事件的预报提供参考。结果显示,GRAPES全球集合预报系统对西太平洋副热带高压脊线的预报技巧最高,强度和面积次之,表现为偏弱的估计,西伸脊点的预报效果相对较差,表现为较观测偏东;对南亚高压强度和中心纬度指数的预报技巧较高,而对中心经度指数预报技巧相对较低。采用最大(小)值法可以有效降低该模式对西太平洋副热带高压强度和面积(西伸脊点)指数的预报偏差。而在南亚高压预报中,集合平均法比最值法具有略高技巧。对于极端性预报,最大值法较集合平均法可以显著提升对西太平洋副热带高压和南亚高压指数极端情形的预报性能,这从个例分析中也得到证实。从而表明集合最值法比平均法可能更适用于该模式的极端事件预报,应在业务应用中加以重视。

Based on the operational standard indices, the prediction skills of the Western-Pacific Subtropical High (WPSH) and South-Asian High (SAH) using 2019 real-time forecasts derived from the Global Ensemble Prediction System of GRAPES (GRAPES-GEPS) in China Meteorological Administration (CMA) Numerical Prediction Center were evaluated and the effects of different ensemble approaches on the prediction skills of WPSH and SAH indices were further investigated in this study. The results show that for WPSH, the GRAPES-GEPS has its highest prediction skill for the ridge line index, considerably high skill for the intensity and area indices, but relatively low skill for the western boundary index, and for SAH, it has comparatively high skill for the intensity and center latitude indices, but relatively lower skill for the center longitude index. Prediction errors of the GRAPES-GEPS for the WPSH forecasts are featured by the weaker intensity and area and the more eastward center position, compared with the observation, which can be effectively reduced by employing the maximum/minimum approach from ensemble members, relative to the ensemble mean approach. By direct comparison, prediction errors of the GRAPES-GEPS for the SAH forecasts are featured by the weaker intensity and the more southward center position, which tends to be slightly reduced using the ensemble mean approach. Finally, for the extreme forecast, the maximum approach provides superior performance for both WPSH and SAH than the ensemble mean approach, which can be validated in terms of the two extreme cases. These results clearly indicate that the maximum approach could better improve the GRAPES-GEPS performance for the extreme forecasting of the two primary circulation patterns than the traditional ensemble mean approach.

中图分类号: 

图1 GRAPES-GEPS500 hPa位势高度场预报的相关系数空间分布
Fig.1 Correlation coefficients of 500 hPa geopotential height between GRAPES-GEPS and observations
图2 GRAPES-GEPS对西太副高强度( a)、面积( b)、脊线位置( c)和西伸脊点( d)指数的预报评分 Taylor
数字1~15代表提前预报的天数
Fig.2 Taylor diagram for forecasting skills of GRAPES-GEPS for the intensitya), areab), ridge pointcand ridge linedindex of the western Pacific subtropical high
The numbers 1~15 represent the days forecasted in advance
图3 GRAPES-GEPS200 hPa位势高度场预报的相关系数空间分布
Fig.3 Correlation coefficients of 200 hPa geopotential height between GRAPES-GEPS and observations
图4 GRAPES-GEPS对南亚高压的强度( a)、中心纬度( b)、中心经度( c)指数的预报评分 Taylor
数字1~15代表提前预报的天数
Fig.4 Taylor diagram for forecasting skills of GRAPES-GEPS for the intensitya), center latitudeb), and center longitudecindex of the southAsia high
The numbers 1~15 represent the days forecasted in advance
图5 GRAPES-GEPS对西太副高强度( a)、面积( b)、脊线位置( c)和西伸脊点( d)指数预报的 Talagrand分布
Fig.5 Talagrand distribution of the intensity (a), area (b), ridge point (c), and the ridge line (d) index of western Pacific subtropical high forecasted by GRAPES-GEPS
图6 GRAPES-GEPS所有集合成员对西太副高指数预报的命中率( a)和离散度( b)对预报时效的演变
Fig.6 The evolution of the hit rate (a) and dispersion (b) of all GRAPES-GEPS ensemble members to the forecast of western Pacific subtropical high index
图7 GRAPES-GEPS对南亚高压强度( a)、中心纬度( b)和中心经度( c)指数预报的 Talagrand分布
Fig.7 Talagrand distribution of the intensity (a), center latitude (b), and center longitude (c) index of south Asia high forecasted by GRAPES-GEPS
图8 GRAPES-GEPS所有集合成员对南亚高压指数预报的命中率( a),离散度( b)对预报时效的演变
Fig.8 The evolution of the hit rate (a) and dispersion (b) of all GRAPES-GEPS ensemble members to the forecast of south Asia high index
图9 两种集合方法预报的西太副高强度( a)、面积( b)和西伸脊点( c)指数的均方根误差
Fig.9 Root mean square error of the intensity (a), area (b) and ridge point (c) indices of western Pacific subtropical high forecasted by the two ensemble methods
图10 两种集合方法预报的西太副高指数的极端个例( 90百分位以上)的均方根误差
Fig.10 Root mean square error of extreme cases (above 90th percentile) of the sub-high index predicted by the two ensemble methods
图11 两种集合方法预报的南亚高压指数的极端个例( 90百分位以上)的均方根误差
Fig.11 Root mean square error of extreme cases (above 90th percentile) of the SAH index predicted by the two ensemble methods
图12 2019923~26日平均的 500 hPa高度场的实况与预报
(a)观测;(b)~(d)使用集合平均法提取的GRAPES-GEPS提前5天(b)、10天(c)和15天(d)的预报场;(e)~(g) 采用最大值法提取GRAPES-GEPS提前5天(e)、10天(f)和15天(g)的预报场;黑色粗线代表5 880 gpm,等值线间隔为40 gpm
Fig.12 Distribution of the 500 hPa geopotential height from observation and GRAPES-GEPS averaged over the period from 23 to 26 September 2019
(a) Observation; (b)~(d) The forecasts of GRAPES-GEPS extracted by the ensemble mean method for 5 days(b), 10 days(c) and 15 days(d) in advance; (e)~(g) The forecasts of GRAPES-GEPS extracted by the Maximum method for 5 days(b), 10 days(c) and 15 days(d) in advance. The lack thick line represents 5 880 gpm, the contour line interval is 40 gpm
图13 2019729日至 81日平均的 200 hPa高度场的实况与预报
(a)观测;(b)~(d)为使用集合平均法提取的GRAPES-GEPS提前5天(b)、10天(c)和15天(d)的预报场,(e)~(g)采用最大值法提取GRAPES-GEPS提前5天(e)、10天(f)和15天(g)的预报场;黑色粗线代表5 880 gpm,等值线间隔为40 gpm
Fig.13 Distribution of the 200 hPa geopotential height from observation and GRAPES-GEPS averaged over the period from 29 July to 1 August 2019
(a) Observation; (b)~(d) The forecasts of GRAPES-GEPS extracted by the ensemble mean method for 5 days(b), 10 days(c) and 15 days(d) days in advance, (e)~(g) The forecasts of GRAPES-GEPS extracted by the Maximum method for 5 days(b), 10 days(c) and 15 days(d) days in advance. The black thick line represents 12 500 gpm, the contour line interval is 50 gpm
1 Tao Shiyan, Wei Jie. The westward, northward advance of the subtropical high over the West Pacific in summer[J]. Journal of Applied Meteorological Science, 2006, 17( 5): 513- 525.
陶诗言, 卫捷. 再论夏季西太平洋副热带高压的西伸北跳[J]. 应用气象学报, 2006, 17( 5): 513- 525.
2 Huang Shisong, Yu Zhihao. On the structure of the subtropical highs and some associated aspects of the general circulation of atmosphere[J]. Acta Meteorologica Sinica, 1962( ): 67- 87.
黄士松, 余志豪. 副热带高压结构及其同大气环流有关若干问题的研究[J]. 气象学报, 1962( ): 67- 87.
3 Yang R W, Xie Z A, Cao J. A dynamic index for the westward ridge point variability of the western Pacific subtropical high during summer[J]. Journal of Climate, 2017, 30: 3 325- 3 341.
4 Mason R B, Anderson C E. The development and decay of the 100mb summertime anticyclone over Southern Asia[J]. Monthly Weather Review, 1963, 91( 1): 3- 12.
5 Tao Shiyan, Zhu Fukang. The 100 -mb flow patterns in Southern Asia in summer and its relation to the advance and retreat of the west-Pacific subtropical anticyclone over the Far East[J]. Acta Meteorologica Sinica, 1964( 4): 3- 14.
陶诗言, 朱福康. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系[J]. 气象学报, 1964( 4): 3- 14.
6 Luo Siwei, Qian Zhengan, Wang Qianqian. The climatic and synoptical study about the relation between the Qinghai-Xizang high pressure on the 100mb surface and the flood and drought in east China in summer[J]. Plateau Meteorology, 1982, 1( 2): 1- 10.
罗四维, 钱正安, 王谦谦. 夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究[J]. 高原气象, 1982, 1( 2): 1- 10.
7 Zhang Qiong, Qian Yongfu, Zhang Xuehong. Interannual and interdecadal variations of the South Asia High[J]. Chinese Journal of Atmospheric Sciences, 2000, 24( 1): 67- 78.
张琼, 钱永甫, 张学洪. 南亚高压的年际和年代际变化[J]. 大气科学, 2000, 24( 1): 67- 78.
8 Zhang Qiong, Wu Guoxiong. The large area flood and drought over Yantze River valley and its relation to the South Asia High[J]. Acta Meteorologica Sinica, 2001, 59( 5): 569- 577.
张琼, 吴国雄. 长江流域大范围旱涝与南亚高压的关系[J]. 气象学报, 2001, 59( 5): 569- 577.
9 Ai Yuexiu, Chen Xingfang. Analysis of the correlation between the subtropical high over western Pacific in summer and SST[J]. Journal of Tropical Meteorology, 2000, 16( 1): 1- 8.
艾悦秀, 陈兴芳. 夏季副高与海温的相互关系及副高预测[J]. 热带气象学报, 2000, 16( 1): 1- 8.
10 Jia Yajun, Hu Yijia, Zhong Zhong, et al. Statistical forecast model of Western Pacific Subtropical High Indices in summer[J]. Plateau Meteorology, 2015, 34( 5): 1 369- 1 378.
贾亚俊, 胡轶佳, 钟中, 等. 夏季西太平洋副热带高压指数的统计预测模型[J]. 高原气象, 2015, 34( 5): 1 369- 1 378.
11 Ren Hongli, Zhang Peiqun, Guo Bingrong, et al. Dynamical model of subtropical high ridge-line section and numerical simulations with its simplified scheme[J]. Chinese Journal of Atmospheric Sciences, 2005, 29( 1): 71- 78.
任宏利, 张培群, 郭秉荣, 等. 预报副高脊面变化的动力模型及其简化数值试验[J]. 大气科学, 2005, 29( 1): 71- 78.
12 Li C, Lu R, Dong B. Predictability of the western North Pacific summer climate demonstrated by the coupled models of Ensembles[J]. Climate Dynamics, 2012, 39( 1/2): 329- 346.
13 Li C, Lu R, Dong B. Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts[J]. Climate Dynamics, 2014, 43( 7/8): 1 829- 1 845.
14 Li C, Lu R, Dong B. Interdecadal changes on the seasonal prediction of the western North Pacific summer climate around the late 1970s and early 1990s[J]. Climate Dynamics, 2016, 46( 7/8): 2 435- 2 448.
15 Yang Jie, Feng Guolin, Zhao Junhu, et al. A study of objective and quantitative forecasting the western Pacific subtropical high and its indication for precipitation in summer over China[J]. Acta Meteorologica Sinica, 2012, 70( 5): 1 032- 1 044.
杨杰, 封国林, 赵俊虎, 等. 夏季西太平洋副热带高压的客观定量化预测及其对汛期降水的指示[J]. 气象学报, 2012, 70( 5): 1 032- 1 044.
16 Ren Hongli, Jifan Chou. Analogue correction method of errors by combining statistical and dynamical methods[J]. Acta Meteorologica Sinica, 2006, 20( 3): 367- 373.
任宏利, 丑纪范. 统计—动力相结合的相似误差订正法[J]. 气象学报, 2005, 63( 6): 988- 993.
17 Duan Chunfeng, Xu Min, Cheng Zhi, et al. Evaluation on monthly prediction of western Pacific subtropical high by DERF2.0 Model[J]. Meteorological Monthly, 2017, 43( 10): 1 267- 1 277.
段春锋, 徐敏, 程智, 等. DERF2.0模式对月尺度西太平洋副热带高压预测能力评估[J]. 气象, 2017, 43( 10): 1 267- 1 277.
18 Zhou F, Ren H L, Hu Z, et al. Seasonal predictability of primary East Asian summer circulation patterns by three operational climate prediction models[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 146: 629- 646.
19 Yang Xuesheng. The characteristic and outlook of the operational medium-range numerical weather prediction models[J]. Meteorological Monthly, 1997, 23( 1): 3- 10.
杨学胜. 国外中期数值预报业务模式的性能及发展趋势[J]. 气象, 1997, 23( 1): 3- 10.
20 Ma Dezhen, Mao Hengqing, Bao Yuanyuan, et al. The subtropical high forecast verification and interpretation of the NWP in summer[J]. Meteorological Monthly, 1999, 25( 3): 49- 53.
马德贞, 毛恒青, 鲍媛媛, 等. 盛夏数值预报模式对副高预报性能检验及其释用[J]. 气象, 1999, 25( 3): 49- 53.
21 Yan Yan, Zhou Renjun, Ke Zongjian, et al. Ensemble forecast and verification of the Western Pacific Subtropical High based on multi-model data from TIGGE[J]. Journal of University of Science and Technology of China, 2017, 47( 5): 392- 402.
颜妍, 周任君, 柯宗建, 等. 基于TIGGE数据的西太平洋副热带高压多模式集成预报及检验[J]. 中国科学技术大学学报, 2017,( 5): 392- 402.
22 Niu R, Zhai P. Synoptic verification of medium-extended-range forecasts of the Northwest Pacific Subtropical High and South Asian High Based on Multi-Center TIGGE Data[J]. Acta Meteorological Sinica, 2013, 27( 5): 725- 741.
23 Xue Jishan. Progress of Chinese numerical prediction in the early new Century[J]. Journal of Applied Meteorological Science, 2006, 17( 5): 602- 610.
薛纪善. 新世纪初我国数值天气预报的科技创新研究[J]. 应用气象学报, 2006, 17( 5): 602- 610.
24 Meng Zhiyong, Zhang Fuqing, Luo Dehai, et al. Review of Chinese atmospheric science research over the past 70 years: Synoptic meteorology[J]. Science China Earth Sciences, 2019, 62: 1 946- 1 991.
孟智勇, 张福青, 罗德海, 等. 新中国成立70年来的中国大气科学研究:天气篇[J]. 中国科学:地球科学, 2019, 49( 12): 1 875- 1 918.
25 Zheng Jiawen, Gao Li, Ren Hongli, et al. Verification of China extreme temperature forecasts in 2016 based on T639 ensemble forecast[J]. Meteorological Monthly, 2019, 45( 4): 469- 482.
郑嘉雯, 高丽, 任宏利, 等. 基于T639集合预报的我国2016年极端温度预报检验[J]. 气象, 2019, 45( 4): 469- 482.
26 Gao Li, Chen Jing, Zheng Jiawen, et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science, 2019, 34( 7): 706- 716.
高丽, 陈静, 郑嘉雯, 等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34( 7): 706- 716.
27 Xue Jishan, Chen Dehui. Scientific Design and Application of Numerical Forecast System of Grapes[M]. Beijing: Science Press, 2008.
薛纪善, 陈德辉. 数值预报系统GRAPES的科学设计与应用[M]. 北京: 科学出版社, 2008.
28 Shen Xueshun, Zhou Xiuji. GRAPES Heavy Rainfall Forecasting System[M]. Beijing: China Meteorological Press, 2013.
沈学顺, 周秀骥. GRAPES暴雨数值预报系统[M]. 北京: 气象出版社, 2013.
29 Liu Yunyun, Li Weijing, Ai Wanxiu, et al. Reconstruction and application of the Monthly Western Pacific Subtropical High Indices[J]. Journal of Applied Meteorological Science, 2012, 23( 4): 414- 423.
刘芸芸, 李维京, 艾婉秀, 等. 月尺度西太平洋副热带高压指数的重建与应用[J]. 应用气象学报, 2012, 23( 4): 414- 423.
30 Zhang Qiong, Qian Yongfu, Zhang Xuehong. Interannual and interdecadal variations of the South Asia High[J]. Chinese Journal of Atmospheric Sciences, 2000, 24( 1): 67- 78.
张琼, 钱永甫, 张学洪. 南亚高压的年际和年代际变化[J]. 大气科学, 2000, 24( 1): 67- 78.
31 Candille G, Talagrand O. Evaluation of probabilistic prediction systems for a scalar variable[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131( 609): 2 131- 2 150.
32 Taylor, Karl E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001, 106( D7): 7 183.
33 Hu Haichuan, Zhou Jun. Application of ensemble extreme wind forecast in Bohai Sea[J]. Meteorological Monthly, 2019, 45( 12): 1 747- 1 755.
胡海川, 周军. 集合预报在渤海极大风预报中的应用[J]. 气象, 2019, 45( 2): 1 747- 1 755.
[1] 王文, 孙畅, 蔡晓军, 许金萍. 南亚高压低频振荡与长江中下游地区旱涝的关系[J]. 地球科学进展, 2016, 31(5): 529-541.
[2] 张宏芳,潘留杰,侯建忠,李明娟. 陕西暖季雷暴的主模态及其可能的影响机制[J]. 地球科学进展, 2013, 28(9): 1025-1035.
阅读次数
全文


摘要