地球科学进展 ›› 2012, Vol. 27 ›› Issue (6): 595 -602. doi: 10.11867/j.issn.1001-8166.2012.06.0595

973项目研究进展    下一篇

热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应
王凡 1,胡敦欣 1,穆穆 1,王启 2,何金海 3,朱江 4,刘志宇 5   
  1. 1. 中国科学院海洋研究所,海洋环流与波动重点实验室,山东青岛266071;2. 中国海洋大学物理海洋教育部重点实验室,山东青岛266003;
    3. 南京信息工程大学江苏省气象灾害省部共建教育部重点实验室,江苏南京210044;4. 中国科学院大气物理研究所国际气候与环境科学中心,北京100029;
    5. 厦门大学近海海洋环境科学国家重点实验室,福建厦门361005
  • 收稿日期:2011-10-27 修回日期:2012-04-13 出版日期:2012-06-10
  • 通讯作者: 王凡(1967-),男,山东青岛人,研究员,项目首席科学家,主要从事海洋环流动力学研究. E-mail:fwang@qdio.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应”(编号:2012CB417400)资助.

Structure, Variations and Climatic Impacts of Ocean Circulation and the Warm Pool in the Tropical Pacific Ocean

Wang Fan 1, Hu Dunxin 1,Mu Mu 1,Wang Qi 2,He Jinhai 3,Zhu Jiang 4,Liu Zhiyu 5   

  1. 1. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, 
    Qingdao266071, China; 2. Key Laboratory of Physical Oceanography, MOE, Ocean University of China, 
    Qingdao266003, China;3. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing 
    University of Information Science & Technology, Nanjing210044, China; 4. International Center for Climate and 
    Environment Science, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing100029, China;
    5. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen361005, China
  • Received:2011-10-27 Revised:2012-04-13 Online:2012-06-10 Published:2012-06-10

热带西太平洋暖池是引发强烈的大气对流、驱动Walker环流和Hadley环流系统的主要热源之一,对全球、尤其是东亚气候有重要影响。针对我国在提升气候预测水平方面的重大和迫切需求,国家重点基础研究发展计划项目“热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应”于2011年7月正式立项。项目拟解决的关键科学问题包括:①调控暖池形成和变异的海洋环流多尺度相互作用过程;②海洋动力过程在暖池热盐结构变异中的作用及其机理;③暖池变异对不同类型El Nio影响机理的异同和对东亚季风变异的调制机理。围绕上述关键科学问题,项目将以暖池变异为中心,关注影响和控制暖池结构与变异的关键海洋过程,以及暖池海气相互作用影响ENSO循环、东亚季风年际变异的过程和机理,重点组织开展以下3个方面有针对性的调查研究:①热带太平洋环流和暖池的结构和变异特征;②热带太平洋环流与暖池相互作用的关键过程和机理;③暖池变异的海洋—大气耦合过程及其气候效应。在此基础上,项目将力争阐明暖池影响东亚季风和我国气候变异的过程、机理与敏感区,改进模式的混合参数化方案,提出有效提高ENSO预报技巧的同化方案,为我国短期气候预测能力的提高提供科学支撑。

The warm pool in the western tropical Pacific Ocean is one of the major heat sources causing strong atmospheric convection, driving the Walker circulation and Hadley cell, hence influencing the global and East Asian climate. Facing the requirement of climate prediction,  variations and climatic impacts of ocean circulation and the warm pool in the tropical Pacific Ocean, a project of the National Basic Research Program Structure,was approved by the Ministry of Science and Technology of China in July, 2011. Three key scientific issues that will be addressed in the project are as follows.① Multi-scale interactions of oceanic dynamic processes associated with the formation and maintenance of the warm pool;② Roles of oceanic processes in warm pool′s thermohaline structure and its variations; ③ Influence of the warm pool variations on different types of El Nino and the East Asia Monsoon modulation. Focusing on the above key issues centered at the warm pool′s variations and climatic impacts, three aspects of investigations will be conducted under the project: ① Structures and variations of ocean circulation and warm pool in the tropical Pacific Ocean; ② Key processes and mechanisms of ocean circulation-warm pool interactions; ③Ocean-atmosphere interactions associated with the warm pool variations and their climatic impacts. In this project, we will try to identify and understand the processes, mechanisms and sensitive areas of the warm pool variations influencing the East Asian Monsoon and climate variations in China, and offer scientific and methodological bases for improving the capacity of the short term climate prediction by developing ocean model′s mixing parameterization and assimilation schemes of coupled model for the ENSO prediction.

中图分类号: 

[1]Clement A C, Seager R, Murtugudde R. Why are there tropical warm pools?[J]. Journal of Climate,2005, 18(24):5 294-5 311.
[2]Picaut J, Ioualalen M, Menkes C, et al. Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO[J]. Science, 1996, 274(5 292):1 486-1 489.
[3]Lukas R, Lindstrom E. The mixed layer of the western equatorial Pacific Ocean[J]. Journal of Geophysical Research, 1991, 96: 3 343-3 358.
[4]Chen D. Upper ocean response to surface momentum and freshwater fluxes in the western Pacific warm pool[J].Journal of Tropical Oceanography, 2004, 23(6): 1-15.
[5]Fu C, Diaz H, Fletcher J. Characteristics of the response of sea surface temperature in the central pacific associated with the warm episodes of the Southern Oscillation[J]. Monthly Weather Review, 1986, 114(9):1 716-1 738.
[6]Ashok K, Behera S K, Rao S, et al. El Niño Modoki and its possible teleconnection[J]. Journal of Geophysical Research, 2007, 112:C11007, doi:10.1029/2007JC003798.
[7]Kug J S, Jin F F, An S I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño[J]. Journal of Climate, 2009, 22(6):1 499-1 515,  doi:10.1175/2008JCLI2624.1.
[8]Nitta T S. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. Journal of Meteorological Society of Japan, 1987, 65:373-390.
[9]Huang Ronghui, Li Weijing. Influence and mechanism of summer heat source anomaly over the western tropical Pacific Ocean on the subtropical high over the East Asia[J]. Atmospheric Science, 1988, (Suppl.):95-107.[黄荣辉, 李维京. 夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制[J]. 大气科学, 1988,(增刊):95-107.]
[10]Chen Y,Hu D. Influence of heat content anomaly in the tropical Western Pacific warm pool region on onset of South China Sea summer monsoon[J]. Acta Meteorologica Sinica, 2003, 17(Suppl.): 213-225.
[11]Huang R, Gu L, Zhou L, et al. Impact of the thermal state of the tropical western Pacific on onset date and process of the South China Sea summer monsoon[J]. Advances in Atmospheric Sciences, 2006, 23(6): 909-924.
[12]Hu D, Yu L. An approach to prediction of the South China Sea summer monsoon onset[J]. Chininese Journal of Oceanology Limnology, 2008, 26(4): 421-424.
[13]Li S, Hoerling M P, Peng S,et al. The annular response to tropical Pacific SST forcing[J]. Journal of Climate, 2006, 19(9):1 802-1 819.
[14]Maes C, Picaut J, Belamari S. Salinity barrier layer and onset of El Niño in a Pacific coupled model[J]. Geophysical Research Letters, 2002, 29(24):2 206, doi: 10.1029/2002GL016029.
[15]Jin E K. Two flavors of El Nio and its predictability[C]US NOAA Climate Test Bed Joint Seminar Series. Maryland, 4 February, 2009.
[16]Hendon H H, Lim E, Wang G, et al. Prospects for predicting two flavors of El Niño[J]. Geophysical Research Letters, 2009, 36:L19713, doi: 10.1029/2009GL040100.
[17]Yuan D, Hu D. Roles of the Pacific western boundary and the Mindanao Current in the evolution of the equatorial “Warm Pool”[J]. Marine Sciences, 1991, 3(4): 30-32.
[18]Wyrtki K. Sea level and the seasonal fluctuations of the equatorial currents in the Western Pacific Ocean[J]. Journal of Physical Oceanography,1974, 4(1):90-103.
[19]Taft B A, Kesser W S. Variations of zonal currents in the central tropical Pacific during 1970 to 1987: Sea level and dynamic height measurements[J]. Journal of Geophysical Research, 1991, 96(C7):12 599-12 618.
[20]Johnson G C, Sloyan B M, Kessler W S, et al. Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s[J]. Progress in Oceanography, 2002, 52(1):31-61.[21]Wang F, Chang P, Hu D, et al. Circulation in the western tropical Pacific Ocean and its seasonal variation[J]. Chinese Science Bulletin, 2002, 47(7):591-595.
[22]Kashino Y, Espana N, Syamsudin F, et al. Observations of the North Equatorial Current, Mindanao Current and the Kuroshio Current system during the 2006/07 El Niño and 2007/08 La Niña[J]. Journal of Oceanography, 2009, 65(3):325-333.
[23]Qiu B, Mao M,Kashino Y, et al. Intraseasonal variability in the Indo-Pacific Throughflow and the regions surrounding the Indonesian Seas[J]. Journal of Physical Oceanography, 1999, 29(7):1 599-1 618.
[24]Scharffenberg M G, Stammer D. Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data[J]. Journal of Geophysical Research,2010, 115:C02008, doi:10.1029/2008JC005242.
[25]Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011,91(2):167-216.
[26]Wyrtki K. El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing[J]. Journal of Physical Oceanography, 1975, 5(4):572-584.
[27]Weisberg R H, Wang C. Slow variability in the equatorial west-central Pacific in relation to ENSO[J]. Journal of Climate, 1997, 10(8):1 998-2 017.
[28]Johnson G C, McPhaden M J. Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean[J]. Journal of Physical Oceanography, 1999, 29:3 073-3 089.
[29]Wang Q, Huang R X. Decadal variability of Pycnocline flows from the subtropical to the equatorial Pacific[J]. Journal of Physical Oceanography,2005, 35(10):1 861-1 875.
[30]Moum J, Lien R, Perlin A, et al. Sea surface cooling at the Equator by subsurface mixing in tropical instability waves[J]. Nature Geoscience, 2009, 2:761-765, doi:10.1038/NGEO657.
[31]Richards K, Edwards N. Lateral mixing in the equatorial Pacific: The importance of inertial instability[J]. Geophysical Research Letters, 2003, 30(17):1 888, doi:10.1029/2003GL017768.

[1] 杜岩,张涟漪,张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 2019, 34(3): 243-254.
[2] 王凡, 刘传玉, 胡石建, 高山, 贾凡, 张林林, 汪嘉宁, 冯俊乔. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782.
[3] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[4] 江森汇, 吴泽文, 舒勰俊. 南海西边界急流影响下的近惯性振荡特征分析[J]. 地球科学进展, 2018, 33(3): 270-280.
[5] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[6] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[7] 武丰民, 何金海, 祁莉. 北极海冰消融及其对欧亚冬季低温影响的研究进展[J]. 地球科学进展, 2014, 29(8): 913-921.
[8] 陈幸荣, 蔡怡, 谭晶, 黄勇勇, 汪雷. 全球变暖hiatus现象的研究进展[J]. 地球科学进展, 2014, 29(8): 947-955.
[9] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[10] 刘泽栋, 万修全, 刘福凯. 海底地热通量对海洋深层温度和环流的长期影响[J]. 地球科学进展, 2014, 29(10): 1167-1174.
[11] 李春. “风应力强迫下北太平洋副热带环流与大气环流耦合调整的过程与机理”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1064-1066.
[12] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[13] 郑晓东,鲁帆,马静. 汉江流域降水多时间尺度特性及其与环流因子的相关性分析[J]. 地球科学进展, 2013, 28(5): 618-626.
[14] 胡正莹,王汝建,李文宝. 南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应[J]. 地球科学进展, 2013, 28(2): 269-281.
[15] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
阅读次数
全文


摘要