地球科学进展 ›› 2014, Vol. 29 ›› Issue (8): 956 -967. doi: 10.11867/j.issn.1001-8166.2014.08.0956

所属专题: 极端天气

上一篇    下一篇

全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究
黄强( ), 陈子燊( )   
  1. 中山大学水资源与环境系, 广东 广州 510275
  • 出版日期:2014-09-16
  • 基金资助:
    国家自然科学基金项目“变化环境下广东旱涝时空变化规律与风险概率研究”(编号:41371498)资助

Regional Study on the Trends of Extreme Temperature and Precipitation Events in the Pearl River Basin

Qiang Huang( ), Zishen Chen( )   

  1. Department of Water Resource and Enviroment, Sun Yat-sen University, Guangzhou 510275, China
  • Online:2014-09-16 Published:2014-09-17

利用中国气象局最新编制的0.5°×0.5°逐日地面气温、降水网格数据, 统计了16种极端气温与降水指数来定义极端气候事件, 通过改进的MannKendall趋势检验方法对珠江流域极端气温与降水事件的时空变化特征进行了研究, 并从区域的视角检验了变化趋势的显著性和一致性, 最后通过偏MannKendall检验探讨了极端气温和降水事件变化与自然界大尺度气候振荡的潜在联系。研究发现:①在过去半个多世纪里, 珠江流域总体上呈现出极端高温事件增多, 极端低温事件减少, 短时间极端降水增多, 长时间极端降水减少的趋势, 珠江流域面临着高温干旱和暴雨洪涝的威胁;②极端气温事件的变化趋势具有区域尺度上的显著性和一致性, 而极端降水事件在区域层面上的趋势则不明显, 并且区域差异大;③反映了大尺度气候振荡的多变量ENSO指数年际变化对珠江流域极端气温与降水事件的变化趋势没有显著的影响, 在一定程度上说明了极端气温与降水事件的变化趋势并不是自然界大尺度气候振荡导致的必然结果, 而可能是与人类活动共同作用的结果。

With the risk of global warming, exploring the changing pattern of extreme climate events in different places is explored for disaster prevention and mitigation. The 0.5°×0.5° grid dataset of daily temperature and precipitation from China Meteorological Administration was used to defined extreme climate events based on the 16 kinds of extreme temperature and precipitation indices. Spatio-temperal variations of the extreme temperature and precipitation events were analyzed through the modified MannKendall trend detecting method across the Pearl River basin, and the significance and consistency of the observed trends were also assessed in a regional perspective. Additionally, whether the observed trends are significantly linked to the largescale climate fluctuation system was investigated. The results indicate that a trend of more extreme high temperature events and less extreme low temperature events, more short time precipitation events and less long time precipitation events has been found in the Pearl River basin over the past half century, which could, consequently, increase the drought and flood risks. It is worthwhile to note that the trends of extreme temperature events are field significant and regional consistent, while the trends of extreme precipitation events are not. Since no significant covariability has been found between the observed trends and the large-scale climate fluctuation system characterized by the multivariate ENSO index, these trends can not be seen as the inevitable outcome of largescale climate fluctuation. Instead, that may be attributed to the common effects of natural and anthropogenic climate change.

中图分类号: 

图1 珠江流域地理位置、主要支流及网格点
Fig. 1 Location of the gridded Pearl River Basin with main streams and major branches
表1 16种极端气温和降水指数
Table 1 The 16 kinds of extreme temperature and precipitation indices
表2
Table 2 The results of MMK test for the Pearl River basin: percentage of grid points exhibiting significant upward (downward) trend at 0.05 significant level on the extreme temperature and precipitation indices
图2 极端气温指数变化趋势的空间分布
Fig. 2 Spatial distribution of trends on the extreme temperature indices
图3 极端降水指数变化趋势的空间分布
Fig. 3 Spatial distribution of trends on the extreme precipitation indices
图4 珠江流域的区域划分
Fig. 4 Delineation of the boundary for different subregions from the Pearl River basin
表3
Table 3 The results of MMK test for all subregions: percentage of grid points exhibiting significant upward (downward) trend at 0.05 significant level on the extreme temperature indices
表4
Table 4 The results of MMK test for all subregions: percentage of grid points exhibiting significant upward (downward) trend at 0.05 significant level on the extreme precipitation indices
表5
Table 5 Field significance and regional consistency of the trends on extreme temperature events for the whole Pearl River basin and subregions
表6
Table 6 Field significance and regional consistency of the trends on extreme precipitation events for the whole Pearl River basin and subregions
表7
Table 7 The results of PMK (MMK) test for the Pearl River basin: percentage of grid points exhibiting significant trend at 0.05 significant level on the extreme temperature and precipitation indices
[1] Li Yucheng. Global climate is warming or cooling?—An interview with the International Meteorological Organization (IMO) award winner, China academician Qin Dahe[J]. Sci-tech Innovarions and Brands, 2011, 47(5): 12-15.
[李玉成. 全球气候: 变暖还是变冷——访世界气象组织(IMO)奖获得者、中国科学院院士秦大河[J]. 科技创新与品牌, 2011, 47(5): 12-15.]
[2] Li Xiangying, Qin Dahe, Xiao Cunde, et al. Progress regarding climate change during recent years[J]. Chinese Science Bulletin, 2011, 56(36): 3 029-3 040.
[李向应, 秦大河, 效存德, 等. 近期气候变化研究的一些最新进展[J]. 科学通报, 2011, 56(36): 3 029-3 040.]
[3] IPCC. Climate change 2013: The physical science basis[M]∥Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013.
[4] IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation[M]∥A Special Report of Working Groups 1 and 2 of the Intergovernmental Panel on Climate Change.Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2012.
[5] Gao Tao, Xie Li’ an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years[J]. Advances in Earth Science, 2014, 29(5): 577-589.
[高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5):577-589. ]
[6] Qian Weihong, Fu Jiaolan, Zhang Weiwei, et al. Changes in mean climate and extreme climate in China during the last 40 years[J]. Advances in Earth Science, 2007, 22(7): 673-684.
[钱维宏, 符娇兰, 张玮玮, 等. 近40年中国平均气候与极值气候变化的概述[J]. 地球科学进展, 2007, 22(7): 673-684. ]
[7] Feng Guolin, Hou Wei, Zhi Rong, et al. Detection, Diagnosis and Predictability Research of Extreme Climate Events[M]. Beijing: Science Press, 2012.
[封国林, 侯威, 支蓉, 等. 极端气候事件的检测、诊断与可预测性研究[M]. 北京: 科学出版社, 2012. ]
[8] Hu Yichang, Dong Wenjie, He Yong. Progress of the study of extreme weather and climate events at the beginning of the twenty first century[J]. Advances in Earth Science, 2007, 22(10): 1 066-1 075.
[胡宜昌, 董文杰, 何勇. 21世纪初极端天气气候事件研究进展[J]. 地球科学进展, 2007, 22(10): 1 066-1 075.]
[9] Zhang Ning, Sun Zhaobo, Zeng Gang. Change of extreme temperatures in China during 1955-2005[J]. Journal of Nanjing Institute of Meteorology, 2008, 31(1): 123-128.
[张宁, 孙照渤, 曾刚. 1955—2005年中国极端气温变化[J]. 南京气象学院学报, 2008, 31(1): 123-128. ]
[10] Zhai Panmao, Pan Xiaohua. Trends in temperature extremes during 1951-1999 in China[J]. Geophysical Research Letters, 2003, 30(17): 1 913-1 916.
[11] Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18: 1 096-1 108.
[12] Liang Kang, Liu Sheng, Bai Peng, et al. The Yellow River Basin becomes wetter or drier? The case as indicated by mean precipitation and extremes during 1961-2012[J]. Theoretical and Applied Climatology, 2014, doi:10.1007/s00704-014-1138-7.
[13] Wang Qiong, Zhang Mingjun, Wang Shengjie, et al. Extreme temperature events in Yangtze River Basin during 1962-2011[J]. Acta Geographica Sinica, 2013, 68(5): 611-625.
[王琼, 张明军, 王圣杰, 等. 1962—2011年长江流域极端气温事件分析[J]. 地理学报, 2013, 68(5): 611-625. ]
[14] She Dunxian, Xia Jun, Zhang Yongyong, et al. The trend analysis and ststistical distribution of extreme rainfall events in the Huaihe River Basin in the past 50 years[J]. Acta Geographica Sinica, 2011, 66(9): 1 200-1 210.
[佘敦先, 夏军, 张永勇, 等, 近50年来淮河流域极端降水的时空变化及统计特征[J]. 地理学报, 2011, 66(9): 1 200-1 210. ]
[15] Peng Juntai, Zhang Qiang, Chen Xiaohong, et al. Spatial and temperal evoluation characteristics of extreme rainfalls in the Pearl River Basin[J]. Journal of Catastrophology, 2011, 26(4): 24-34.
[彭俊台, 张强, 陈晓宏, 等. 珠江流域极端降雨时空演变特征分析[J]. 灾害学, 2011, 26(4): 24-34. ]
[16] Wang Baolong, Zhang Mingjun, Wei Junlin, et al. The change in extreme events of temperature and precipitation over Northwest China in recent 50 years[J]. Journal of Natural Resources, 2012, 27(10): 1720-1733.
[汪宝龙, 张明军, 魏军林, 等. 西北地区近50a气温和降水极端事件的变化特征[J]. 自然资源学报, 2012, 27(10): 1 720-1 733. ]
[17] Zhang Qiang, Li Jianfeng, Chen Xiaohong, et al. Spatial variability of probability distribution of extreme precipitation in Xinjiang[J]. Acta Geographica Sinica, 2011, 66(1): 3-12.
[张强, 李剑锋, 陈晓宏, 等. 基于Copula函数的新疆极端降水概率时空变化特征[J]. 地理学报, 2011, 66(1): 3-12. ]
[18] Wu Guoxiong, Lin Hai, Zou Xiaolei, et al. Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29(1): 15-22.
[吴国雄, 林海, 邹晓蕾, 等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22. ]
[19] Wang Zhaoli, Chen Xiaohong, Huang Guoru. Spatio-temporal change characteristics of mean temperature in the Pearl River Basin during 1961-2000[J]. Tropical Geography, 2007, 27(4): 289-294.
[王兆礼, 陈晓宏, 黄国如. 近40年来珠江流域平均气温时空演变特征[J]. 热带地理, 2007, 27(4): 289-294. ]
[20] Wang Zhaoli, Chen Xiaohong, Zhang Ling, et al. Spatio-temporal change characteristics of precipitation in the Pearl River Basin in recent 40 years[J]. Journal of China Hydrology, 2006, (6): 71-75.
[王兆礼, 陈晓宏, 张灵, 等. 近40年来珠江流域降水量的时空演变特征[J]. 水文, 2006, (6): 71-75. ]
[21] Peterson T C. Climate change indices[J]. WMO Bulletin, 2005, 54(2): 83-86.
[22] Wolter K, Timlin M S. EI Nino/southern oscillation behavior since 1871 as diagnosed in a extended multivariate ENSO index (MEI.ext)[J]. International Journal of Climatology, 2011, 31: 1 074-1 087.
[23] Yue S, Wang C Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series[J]. Water Resources Management, 2004, 18: 201-218.
[24] Libiseller C, Grimvall A. Performance of partial Mann-Kendall tests in the presence of covariates[J]. Environmetrics, 2002, 13: 71-84.
[25] Douglas E M, Vogel R M, Kroll C N. Trends in floods and low flows in the United States: Impact of spatial correlation[J]. Journal of Hydrology, 2000, 240(1/2): 90-105.
[26] Renard B, Lang M. Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology[J]. Advances in Water Resources, 2007, 30: 897-912.
[27] Yue S, Wang C Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation[J]. International Journal of Climatology, 2002, 22: 933-946.
[28] Wei Yongping, Zheng Hang, John Langford, et al. A knowledge co-production system for river basin management under changing environment[J]. Advances in Earth Science, 2012, 27(1): 52-59.
[Wei Yongping, 郑航, John Langford, 等. 论变化环境下流域管理的知识创新[J]. 地球科学进展, 2012, 27(1): 52-59. ]
[29] He Chansheng. Watershed science and water resources management[J]. Advances in Earth Science, 2012, 27(7): 705-711.
[贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711. ]
[30] Zhang Qiang, Xu Chongyu, Zhang Zengxin. Observed changes of drought/wetness episodes in the Pearl River Basin, China, using the standardized precipitation index and aridity index[J]. Theoretical and Applied Climatology, 2009, 98: 89-99.
[31] Xiao Mingzhong, Zhang Qiang, Chen Xiaohong. Spatial-temperal patterns of drought risk across the Pearl River Basin[J]. Acta Geographica Sinica, 2012, 2012, 67(1): 83-92.
[肖名忠, 张强, 陈晓宏. 基于多变量概率分析的珠江流域干旱特征研究[J]. 地理学报, 2012, 67(1): 83-92. ]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要