Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (8): 956-967    DOI: 10.11867/j.issn.1001-8166.2014.08.0956
全球变化研究     
全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究
黄强, 陈子燊
中山大学水资源与环境系, 广东 广州 510275
Regional Study on the Trends of Extreme Temperature and Precipitation Events in the Pearl River Basin
Huang Qiang, Chen Zishen
Department of Water Resource and Enviroment, Sun Yat-sen University, Guangzhou 510275, China
 全文: PDF(7844 KB)   HTML
摘要:

利用中国气象局最新编制的0.5°×0.5°逐日地面气温、降水网格数据, 统计了16种极端气温与降水指数来定义极端气候事件, 通过改进的MannKendall趋势检验方法对珠江流域极端气温与降水事件的时空变化特征进行了研究, 并从区域的视角检验了变化趋势的显著性和一致性, 最后通过偏MannKendall检验探讨了极端气温和降水事件变化与自然界大尺度气候振荡的潜在联系。研究发现:①在过去半个多世纪里, 珠江流域总体上呈现出极端高温事件增多, 极端低温事件减少, 短时间极端降水增多, 长时间极端降水减少的趋势, 珠江流域面临着高温干旱和暴雨洪涝的威胁;②极端气温事件的变化趋势具有区域尺度上的显著性和一致性, 而极端降水事件在区域层面上的趋势则不明显, 并且区域差异大;③反映了大尺度气候振荡的多变量ENSO指数年际变化对珠江流域极端气温与降水事件的变化趋势没有显著的影响, 在一定程度上说明了极端气温与降水事件的变化趋势并不是自然界大尺度气候振荡导致的必然结果, 而可能是与人类活动共同作用的结果。

关键词: 多变量ENSO指数气候变化区域显著性与一致性趋势检验极端气温与降水指数    
Abstract:

:With the risk of global warming, exploring the changing pattern of extreme climate events in different places is explored for disaster prevention and mitigation. The 0.5°×0.5° grid dataset of daily temperature and precipitation from China Meteorological Administration was used to defined extreme climate events based on the 16 kinds of extreme temperature and precipitation indices. Spatio-temperal variations of the extreme temperature and precipitation events were analyzed through the modified MannKendall trend detecting method across the Pearl River basin, and the significance and consistency of the observed trends were also assessed in a regional perspective. Additionally, whether the observed trends are significantly linked to the largescale climate fluctuation system was investigated. The results indicate that a trend of more extreme high temperature events and less extreme low temperature events, more short time precipitation events and less long time precipitation events has been found in the Pearl River basin over the past half century, which could, consequently, increase the drought and flood risks. It is worthwhile to note that the trends of extreme temperature events are field significant and regional consistent, while the trends of extreme precipitation events are not. Since no significant covariability has been found between the observed trends and the large-scale climate fluctuation system characterized by the multivariate ENSO index, these trends can not be seen as the inevitable outcome of largescale climate fluctuation. Instead, that may be attributed to the common effects of natural and anthropogenic climate change.

Key words: Climate change    Extreme temperature and precipitation indices    Trend analysis    Multivariate ENSO index    Field significance and regional consistency.
出版日期: 2014-09-17
:  P423.3  
基金资助:

国家自然科学基金项目“变化环境下广东旱涝时空变化规律与风险概率研究”(编号:41371498)资助

通讯作者: 陈子燊(1952-), 男, 福建福州人, 教授, 主要从事极端水文事件与风险研究.      E-mail: eesczs@mail.sysu.edu.cn
作者简介: 黄强(1989-), 男, 广东清远人, 博士研究生, 主要从事极端水文事件与风险研究. E-mail:huangq52@mail2.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈子燊
黄强

引用本文:

黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.

Huang Qiang, Chen Zishen. Regional Study on the Trends of Extreme Temperature and Precipitation Events in the Pearl River Basin. Advances in Earth Science, 2014, 29(8): 956-967.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.08.0956        http://www.adearth.ac.cn/CN/Y2014/V29/I8/956

[1] Yucheng. Global climate is warming or cooling?—An interview with the International Meteorological Organization (IMO) award winner, China academician Qin Dahe[J]. Sci-tech Innovarions and Brands, 2011, 47(5): 12-15.[李玉成. 全球气候: 变暖还是变冷——访世界气象组织(IMO)奖获得者、中国科学院院士秦大河[J]. 科技创新与品牌, 2011, 47(5): 12-15.]
[2] Xiangying, Qin Dahe, Xiao Cunde, et al. Progress regarding climate change during recent years[J]. Chinese Science Bulletin, 2011, 56(36): 3 029-3 040.[李向应, 秦大河, 效存德, 等. 近期气候变化研究的一些最新进展[J]. 科学通报, 2011, 56(36): 3 029-3 040.]
[3] Climate change 2013: The physical science basis[M]∥Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013.
[4] Managing the risks of extreme events and disasters to advance climate change adaptation[M]∥A Special Report of Working Groups 1 and 2 of the Intergovernmental Panel on Climate Change.Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2012.
[5] Tao, Xie Li’ an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years[J]. Advances in Earth Science, 2014, 29(5): 577-589.[高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5):577-589. ]
[6] Weihong, Fu Jiaolan, Zhang Weiwei, et al. Changes in mean climate and extreme climate in China during the last 40 years[J]. Advances in Earth Science, 2007, 22(7): 673-684.[钱维宏, 符娇兰, 张玮玮, 等. 近40年中国平均气候与极值气候变化的概述[J]. 地球科学进展, 2007, 22(7): 673-684. ]
[7] Guolin, Hou Wei, Zhi Rong, et al. Detection, Diagnosis and Predictability Research of Extreme Climate Events[M]. Beijing: Science Press, 2012.[封国林, 侯威, 支蓉, 等. 极端气候事件的检测、诊断与可预测性研究[M]. 北京: 科学出版社, 2012. ]
[8] Yichang, Dong Wenjie, He Yong. Progress of the study of extreme weather and climate events at the beginning of the twenty first century[J]. Advances in Earth Science, 2007, 22(10): 1 066-1 075.[胡宜昌, 董文杰, 何勇. 21世纪初极端天气气候事件研究进展[J]. 地球科学进展, 2007, 22(10): 1 066-1 075.]
[9] Ning, Sun Zhaobo, Zeng Gang. Change of extreme temperatures in China during 1955-2005[J]. Journal of Nanjing Institute of Meteorology, 2008, 31 (1): 123-128.[张宁, 孙照渤, 曾刚. 1955—2005年中国极端气温变化[J].南京气象学院学报, 2008, 31(1): 123-128. ]
[10] Panmao, Pan Xiaohua. Trends in temperature extremes during 1951-1999 in China[J]. Geophysical Research Letters, 2003, 30(17): 1 913-1 916.
[11] P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18: 1 096-1 108.
[12] Kang, Liu Sheng, Bai Peng, et al. The Yellow River Basin becomes wetter or drier? The case as indicated by mean precipitation and extremes during 1961-2012[J]. Theoretical and Applied Climatology, 2014, doi:10.1007/s00704-014-1138-7.
[13] Qiong, Zhang Mingjun, Wang Shengjie, et al. Extreme temperature events in Yangtze River Basin during 1962-2011[J]. Acta Geographica Sinica, 2013, 68(5): 611-625.[王琼, 张明军, 王圣杰, 等. 1962—2011年长江流域极端气温事件分析[J]. 地理学报, 2013, 68(5): 611-625. ]
[14] Dunxian, Xia Jun, Zhang Yongyong, et al. The trend analysis and ststistical distribution of extreme rainfall events in the Huaihe River Basin in the past 50 years[J]. Acta Geographica Sinica, 2011, 66(9): 1 200-1 210.[佘敦先, 夏军, 张永勇, 等, 近50年来淮河流域极端降水的时空变化及统计特征[J]. 地理学报, 2011, 66(9): 1 200-1 210. ]
[15] Juntai, Zhang Qiang, Chen Xiaohong, et al. Spatial and temperal evoluation characteristics of extreme rainfalls in the Pearl River Basin[J]. Journal of Catastrophology, 2011, 26(4): 24-34.[彭俊台, 张强, 陈晓宏, 等. 珠江流域极端降雨时空演变特征分析[J]. 灾害学, 2011, 26(4): 24-34. ]
[16] Baolong, Zhang Mingjun, Wei Junlin, et al. The change in extreme events of temperature and precipitation over Northwest China in recent 50 years[J]. Journal of Natural Resources, 2012, 27 (10): 1 720-1 733.[汪宝龙, 张明军, 魏军林, 等. 西北地区近50a气温和降水极端事件的变化特征[J]. 自然资源学报, 2012, 27(10): 1 720-1 733. ]
[17] Qiang, Li Jianfeng, Chen Xiaohong, et al. Spatial variability of probability distribution of extreme precipitation in Xinjiang[J]. Acta Geographica Sinica, 2011, 66(1): 3-12.[张强, 李剑锋, 陈晓宏, 等. 基于Copula函数的新疆极端降水概率时空变化特征[J]. 地理学报, 2011, 66(1): 3-12. ]
[18] Guoxiong, Lin Hai, Zou Xiaolei, et al. Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29 (1): 15-22.[吴国雄, 林海, 邹晓蕾, 等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29 (1): 15-22. ]
[19] Zhaoli, Chen Xiaohong, Huang Guoru. Spatio-temporal change characteristics of mean temperature in the Pearl River Basin during 1961-2000[J]. Tropical Geography, 2007, 27(4): 289-294.[王兆礼, 陈晓宏, 黄国如. 近40年来珠江流域平均气温时空演变特征[J]. 热带地理, 2007, 27(4): 289-294. ]
[20] Zhaoli, Chen Xiaohong, Zhang Ling, et al. Spatio-temporal change characteristics of precipitation in the Pearl River Basin in recent 40 years[J]. Journal of China Hydrology, 2006, (6): 71-75.[王兆礼, 陈晓宏, 张灵, 等. 近40年来珠江流域降水量的时空演变特征[J]. 水文, 2006, (6): 71-75. ]
[21] T C. Climate change indices[J]. WMO Bulletin, 2005, 54 (2): 83-86.
[22] K, Timlin M S. EI Nino/southern oscillation behavior since 1871 as diagnosed in a extended multivariate ENSO index (MEI.ext)[J]. International Journal of Climatology, 2011, 31: 1 074-1 087.
[23] S, Wang C Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series[J]. Water Resources Management, 2004, 18: 201-218.
[24] C, Grimvall A. Performance of partial Mann-Kendall tests in the presence of covariates[J]. Environmetrics, 2002, 13: 71-84.
[25] E M, Vogel R M, Kroll C N. Trends in floods and low flows in the United States: Impact of spatial correlation[J]. Journal of Hydrology, 2000, 240(1/2): 90-105.
[26] B, Lang M. Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology[J]. Advances in Water Resources, 2007, 30: 897-912.
[27] S, Wang C Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation[J]. International Journal of Climatology, 2002, 22: 933-946.
[28] Yongping, Zheng Hang, John Langford, et al. A knowledge co-production system for river basin management under changing environment[J]. Advances in Earth Science, 2012, 27 (1): 52-59.[Wei Yongping, 郑航, John Langford, 等. 论变化环境下流域管理的知识创新[J]. 地球科学进展, 2012, 27 (1): 52-59. ]
[29] Chansheng. Watershed science and water resources management[J]. Advances in Earth Science, 2012, 27 (7): 705-711.[贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27 (7): 705-711. ]
[30] Qiang, Xu Chongyu, Zhang Zengxin. Observed changes of drought/wetness episodes in the Pearl River Basin, China, using the standardized precipitation index and aridity index[J]. Theoretical and Applied Climatology, 2009, 98: 89-99.
[31] Mingzhong, Zhang Qiang, Chen Xiaohong. Spatial-temperal patterns of drought risk across the Pearl River Basin[J]. Acta Geographica Sinica, 2012, 2012, 67 (1): 83-92.[肖名忠, 张强, 陈晓宏. 基于多变量概率分析的珠江流域干旱特征研究[J]. 地理学报, 2012, 67 (1): 83-92. ]
[1] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[2] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[3] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[4] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[5] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[6] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[7] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[8] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[9] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[10] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[11] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[12] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[13] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[14] 李育, 朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801.
[15] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.