地球科学进展 ›› 2014, Vol. 29 ›› Issue (8): 913 -921. doi: 10.11867/j.issn.1001-8166.2014.08.0913

上一篇    下一篇

北极海冰消融及其对欧亚冬季低温影响的研究进展
武丰民( ), 何金海 *( ), 祁莉   
  1. 南京信息工程大学 气象灾害教育部重点实验室, 江苏南京, 210044
  • 收稿日期:2014-04-30 修回日期:2014-07-27 出版日期:2014-09-16
  • 通讯作者: 何金海 E-mail:wfm_nuist@163.com;hejhnew@nuist.edu.cn
  • 基金资助:
    国家重点基础研究发展计划项目“暖池变异对ENSO及东亚季风的影响机制”(编号:2012CB417403);长江学者和创新团队发展计划(PCSIRT)资助

Arctic Sea Ice Declining and Its Impact on the Cold Eurasian Winters: A Review

Fengmin Wu( ), Jinhai He( ), Li Qi   

  1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2014-04-30 Revised:2014-07-27 Online:2014-09-16 Published:2014-09-17

21世纪以来北极气候系统正在发生着剧烈变化。北极海冰史无前例的急剧消融是其中最重要的指示和衡量标志。北极海冰的急剧消融与北极气温升高紧密联系, 在近年来欧亚大陆频发的冬季低温事件中也扮演着关键角色。首先介绍了北极海冰的季节特征及近年来的消融现状, 并从动力学和热力学2个方面总结了海冰急剧消融的可能原因。阐述了北极增温的季节特点及其与北极海冰消融的关系。分析了北极海冰消融与欧亚大陆冷冬频发的联系及其可能机理。基于对以上研究进展的总结, 提出了该研究领域尚需解决的几个问题, 为相关研究提供参考。

The Arctic climate system has been changing dramatically since the 21st century, of which the most important indicator is the unprecedented declining of the Arctic Sea Ice (ASI). The low ASI is not only closely related with Arctic amplification, but also plays a central role in the frequent cold Eurasian winters. In this paper, the seasonal feature of ASI and the current situation are introduced, and the possible reasons for the rapid shrinking of ASI are analyzed both dynamically and thermodynamically. Furthermore, the seasonal feature of the Arctic warming and its connection with ASI declining are discussed. The impact of the ASI declining on the atmospheric circulation in the northern winter hemisphere is summarized. The relationship between the ASI declining and increased occurrence of cold winters in Eurasia, as well as the potential mechanisms, are investigated. Lastly, this study proposes several issues that remain to be solved in this area.

中图分类号: 

图1 北极(66.5°N以北)海冰密集度线性趋势(1979—2011)的年循环 [ 11 ]长柱代表北极海冰密集度的年循环(1979—2011), 单位为%。实线为哈德莱中心海冰密集度的变化趋势(1979—2011), 单位为%/10年, 其中标记圆圈的月份通过了95%的置信度水平
Fig.1 Annual cycle of Arctic (north of 66.5°N) sea ice concentration trends, 1979—2011 The gray bars show the annual cycle of mean sea ice concentration (%).Trends (% per decade) are shown by month and averaged from Hadley Centre sea ice data north of 66.5°N (solid line). Dots show trends that are statistically significant at the 95% level or better.
[1] Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover[J]. Science, 2007, 315(5 818): 1 533-1 536.
[2] Bader J, Mesquita M D S, Hodges K I, et al. A review on northern hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes[J]. Atmospheric Research, 2011, 101(4): 809-834.
[3] Yu Yongqiang, Chen Wen. Impact of Air-Sea Interaction on the Climate Change of China[M]. Beijing:Meteorological Press, 2005.
[俞永强, 陈文. 海—气相互作用对我国气候变化的影响[M].北京:气象出版社, 2005.]
[4] Huang Shisong, Yang Xiuqun, Jiang Quanrong, et al. The effects of the polar sea ice on climate[J]. Journal of the Meteorological Science, 1995, 15(4): 46-56.
[黄士松, 杨修群, 蒋全荣, 等. 极地海冰变化对气候的影响[J]. 气象科学, 1995, 15(4): 46-56.]
[5] Stroeve J C, Serreze M C, Holland M M, et al. The Arctic’s rapidly shrinking sea ice cover: A research synthesis[J]. Climatic Change, 2011, 110(3/4):1005-1027.
[6] Parkinson C L, Comiso J C. On the 2012 record low Arctic Sea ice cover: Combined impact of preconditioning and an August storm[J]. Geophysical Research Letters, 2013, 40(7): 1356-1361.
[7] Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334-1337.
[8] IPCC. Climate Change 2013: The Physical Basis[M]. Cambridge: Cambridge University Press, 2013.
[9] Zhang X, Sorteberg A, Zhang J, et al. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system[J]. Geophysical Research Letters, 2008, 35: L22701, doi:10.1029/2008GL035607.
[10] Budikova D. Role of Arctic sea ice in global atmospheric circulation: A review[J]. Global and Planetary Change, 2009, 68(3): 149-163.
[11] Wu Fengmin, He Jinhai, Qi Li, et al. The seasonal difference of Arctic warming and it’s mechanism under sea ice cover diminishing[J]. Acta Oceanologica Sinica, 2014, 36(3): 39-47.
[武丰民, 何金海, 祁莉, 等. 海冰消融背景下北极增温的季节差异及其原因探讨[J]. 海洋学报, 2014, 36(3): 39-47.]
[12] Zhang J, Lindsay R, Schweiger A, et al. The impact of an intense summer cyclone on 2012 Arctic Sea ice retreat[J]. Geophysical Research Letters, 2013, 40(4):720-726.
[13] Mu Longjiang, Zhao Jinping. Variability of the Greenland Sea ice edge[J]. Advances in Earth Science, 2013, 28(6):709-717.
[牟龙江, 赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6):709-717.]
[14] Francis J A, Vavrus S J. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 2012, 39:L06801, doi:10.1029/2012GL051000.
[15] Maslanik J A, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, doi:10.1029/2007GL032043.
[16] Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39:L08501, doi:10.1029/2012GL051432.
[17] Stroeve J C, Markus T, Boisvert L, et al. Changes in Arctic melt season and implications for sea ice loss[J]. Geophysical Research Letters, 2014, 41, doi: 10.1002/2013GL058951.
[18] Liu J, Song M, Horton R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[J]. Proceeding of the National Academy of the Sciences of the United States of America, 2013, 110(31):12571-12576.
[19] Hartmann D L. Global Physical Climatology: International Geophysics Series[M]. USA, Salt Lake City: Academic Press, 1994: 411-412.
[20] Hudson S R, Granskog M A, Sundfjord A, et al. Energy budget of first-year Arctic Sea ice in advanced stages of melt[J]. Geophysical Research Letters, 2013, 40(11):2679-2683.
[21] Ren Jiawen, Ming Jing. Key scientific points on cryosphere changes from the IPCC fifth assessment report[J]. Advances in Climate Change Research, 2014, 10(1):25-28.
[任贾文, 明镜. IPCC第五次评估报告对冰冻圈变化的评估结果要点[J]. 气候变化研究进展, 2014, 10(1):25-28.]
[22] Maqueda M A M, Willmott A J, Bamber J L, et al. An investigation of the small ice cap instability in the Southern Hemisphere with a coupled atmosphere-sea ice-ocean-terrestrial ice model[J]. Climate dynamics, 1998, 14(5): 329-352.
[23] Shimada K, Kamoshida T, Itoh M, et al. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean[J]. Geophysical Research Letters, 2006, 33: L08605, doi: 10.1029/2005GL025624.
[24] Carmack E, Melling H. Warmth from the deep[J]. Nature Geoscience, 2011, 4: 7-8.
[25] Rigor I G, Wallace J M, Colony R L. Response of sea ice to the Arctic Oscillation[J]. Journal of Climate, 2002, 15(18): 2648-2663.
[26] Wu B, Overland J, D’Arrigo R. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend[J]. Tellus A, 2012, 64(A): 18590, doi: 10.3402/tellusa.v64i0.18590.
[27] Lindsay R W, Zhang J. The thinning of Arctic Sea ice, 1988-2003 have we passed a tipping point[J]. Journal of Climate, 2005, 18(22): 4879-4894.
[28] Winton M. Amplified climate change: What does surface albedo feedback have to do with it?[J]. Geophysical Research Letters, 2006, 33, doi:10.1029/2005GL025244.
[29] Lu J, Cai M. Seasonality of polar surface warming amplification in climate simulations[J]. Geophysical Research Letters, 2009, 36, doi:10.1029/2009GL040133.
[30] Graversen R G, Wang M. Polar amplification in a coupled model with locked albedo[J]. Climate Dynamics, 2009, 33: 629-643.
[31] Screen J A, Simmonds I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification[J]. Geophysical Research Letters, 2010, 37:L16707, doi:10.1029/2010GL044136.
[32] Perovich D, Richter-Menge J, Jones K, et al. Sunlight, water, and ice:Extreme Arctic Sea ice melt during the summer of 2007[J]. Geophysical Research Letters, 2008, doi:10.1029/2008 GL034007.
[33] Screen J A, Deser C, Simmonds I, et al. Atmospheric impacts of Arctic sea-ice loss, 1979-2009: Separating forced change from atmospheric internal variability[J]. Climate Dynamics, 2014, 431(1/2):333-344.
[34] Screen J A, Simmonds I, Deser C, et al. The atmospheric response to three decades of observed Arctic Sea ice loss[J]. Journal of Climate, 2013, 26(4): 1230-1248.
[35] Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth’s climate system[J]. Proceeding of the National Academy of the Sciences of the United States of America, 2008, 105(6):1786-1793.
[36] Deser C, Tomas R, Alexander M, et al. The seasonal atmospheric response to projected Arctic Sea ice loss in the late twenty-first century[J]. Journal of Climate, 2010, 23: 333-351.
[37] Serreze M C, Barrett A P, Stroeve J C, et al. The emergence of surface-based Arctic amplification[J]. The Cryosphere, 2009, 3: 11-19.
[38] Dickson R R, Meincke J, Malmberg S A, et al. The “great salinity anomaly” in the northern North Atlantic 1968-1982[J]. Progress in Oceanography, 1988, 20(2): 103-151.
[39] Zhang X D, He J X, Zhang J, et al. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend[J]. Nature Climate Change, 2013, 3: 47-51.
[40] Alexander M A, Bhatt U S, Walsh J E, et al. The atmospheric response to realistic Arctic Sea ice anomalies in an AGCM during winter[J]. Journal of Climate, 2004, 17:890-905.
[41] Wu B, Handorf D, Dethloff K, et al. Winter weather patterns over northern Eurasia and Arctic Sea ice loss[J]. Monthly Weather Review, 2013, 141(11): 3786, doi:10.1175/MWR-D-13-00046.1.
[42] WMO. Cold Spell in Europe and Asia in Late Winter 2011/2012[R/OL]. 2012. (2013-10-02)..
URL    
[43] [JP2]Ding Yihui, Wang Zunya, Song Yafang, et al. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming[J]. Journal of Meteorological Research, 2008, 66(5):808-825.
[丁一汇, 王遵娅, 宋亚芳, 等. 中国南方 2008 年 1 月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系[J]. 气象学报, 2008, 66(5):808-825]
[44] Li Chongyin, Gu Wei. An analyzing study of the anomalous activity of blocking high over the Ural Mountains in January 2008[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(5):865-874.
[李崇银, 顾薇. 2008年1月乌拉尔山阻塞高压异常活动的分析研究[J]. 大气科学, 2010, 34(5):865-874.]
[45] Cattiaux J, Vautard R, Cassou C, et al. Winter 2010 in Europe:A cold extreme in a warming climate[J]. Geophysical Research Letters, 2010, 37:L20704, doi:10.1029/2010GL044613.
[46] Zhai Panmao, Ni Yunqi, Chen Yang. Mechanism and forecasting method of persistent extreme weather events:Review and prospect[J]. Advances in Earth Science, 2013, 28(11):1177-1188.
[翟盘茂, 倪允琪, 陈阳.我国持续重大天气异常成因及预报方法研究回顾与未来展望[J]. 地球科学进展, 2013, 28(11):1177-1188. ]
[47] Honda M, Inoue J, Yamane S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters[J]. Geophysical Research Letters, 2009, 36:L08707, doi:10.1029/2008GL037079.
[48] Outten S D, Esau I. A link between Arctic Sea ice and recent cooling trends over Eurasia[J]. Climatic Change, 2012, 110(3/4):1069-1075.
[49] Jaiser R, Dethloff K, Handorf D, et al. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation[J]. Tellus A, 2012, 64:11595, doi: 10.3402/tellusa.v64i0.11595.
[50] Hopsch S, Cohen J, Dethloff K. Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter[J]. Tellus A, 2012, 64:18624.
[51] Peings Y, Magnusdottir G. Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic Sea ice decline: A numerical study with CAM5[J]. Journal of Climate, 2014, 27(1): 244-264.
[52] Liu J, Currya J A, Wangb H, et al. Impact of declining Arctic Sea ice on winter snowfall[J]. Proceeding of the National Academy of the Sciences of the United States of America, 2012, 109(11): 4074-4079.
[53] Wu Z, Li J, Jiang Z, et al. Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter[J]. Climate Dynamics, 2010, 37(7/8):1661-1669.
[54] Overland J E, Wang M. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice[J]. Tellus A, 2010, 62(1):1-9.
[55] Zahn M, Storch H. Decreased frequency of North Atlantic polar lows associated with future climate warming[J]. Nature, 2010, 467(7313) : 309-312.
[56] Francis J A, Chan W, Leathers D J, et al. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent[J]. Geophysical Research Letters, 2009, 36: L07503, doi:10.1029/2009GL037274.
[57] Inoue J, Hori M E, Takaya K. The role of Barents Sea ice in the wintertime cyclone track and emergence of a Warm-Arctic cold-siberian anomaly[J]. Journal of Climate, 2012, 25(7): 2561-2568.
[58] Wu B Y, Su J Z, Zhang R H. Effects of autumn-winter Arctic Sea ice on winter Siberian High[J]. Chinese Science Bulletin, 2011, 56, doi: 10.1007/s11434-011-4696-4.
[59] Seierstad I A, Bader J. Impact of a projected future Arctic Sea ice reduction on extratropical storminess and the NAO[J]. Climate Dynamics, 2009, 33(7/8):937-943.
[60] Sokolova E, Dethloff K, Rinke A, et al. Planetary and synoptic scale adjustment of the Arctic atmosphere to sea ice cover changes[J]. Geophysical Research Letters, 2007, 34:L17816, doi:10.1029/2007GL030218.
[61] Petoukhov V, Semenov V A. A link between reduced Barents-Kara Sea ice and cold winter extremes over northern continents[J]. Journal of Geophysical Research, 2010, 115:D21111, doi:10.1029/2009JD013568.
[62] Hurrell J W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation[J]. Science, 1995, 269:676-679.
[63] Li Jian, Yu Rucong, Zhou Tianjun, et al. Why is there an early spring cooling shift downstream of the Tibetan Plateau[J]. Journal of Climate, 2005, 18(22):4660-4668.
[64] Xin Xiaoge, Yu Rucong, Zhou Tianjun, et al. Drought in late spring of south China in recent decades[J]. Journal of Climate, 2006, 19(13): 3197-3206.
[65] Yu Rucong, Zhou Tianjun. Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century[J]. Geophysical Research Letters, 2004, 31:L12204, doi:10.1029/2004GL019814.
[66] Xin X G, Zhou T, Yu R C. Increased Tibetan Plateau snow depth: An indicator of the connection between enhanced winter NAO and late-spring tropospheric cooling over East Asia[J]. Advances in Atmospheric Sciences, 2010, 27(4):788-794, doi: 10.1007/s00376-009-9071-x.
[67] Wu Q, Zhang X. Observed forcing feedback processes between Northern Hemisphere atmospheric circulation and Arctic Sea ice coverage[J]. Journal of Geophysical Research, 2010, 115: D14119. doi:10.1029/2009JD013574.
[68] Deser C, Magnusdottir G, Saravanan R, et al. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response[J]. Journal of Climate, 2004, 17(5):877-889.
[69] Semenov V A, Latif M, Dommenget D, et al. The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature[J]. Journal of Climate, 2010, 23(21): 5668-5677.
[70] Merkel U, Latif M. A high resolution AGCM study of the El Nio impact on the North Atlantic/European sector[J]. Geophysical Research Letters, 2002, 29(9):1-5, doi:10.1029/2001GL013726.
[71] Tang Q, Zhang X, Yang X, et al. Cold winter extremes in northern continents linked to Arctic Sea ice loss[J]. Environmental Research Letters, 2013, 8(1): 014036, doi:10.1088/1748-9326/81/014036.
[72] Lu Riyu. Separation of interannual and interdecadal variations of rainfall in north China[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(5):611-624.
[陆日宇. 华北汛期降水量变化中年代际和年际尺度的分离[J]. 大气科学, 2002, 26(5):611-624.]
[73] Xu Guiyu, Yang Xiuqun, Sun Xuguang. Interdecadal and interannual variation characteristics of rainfall in north China and its relation with the northern hemisphere atmospheric circulations[J]. Chinese Journal of Geophysics, 2005, 48(3):511-518.
[徐桂玉, 杨修群, 孙旭光.华北降水年代际、年际变化特征与北半球大气环流的联系[J]. 地球物理学报, 2005, 48(3):511-518.]
[74] Ping Fan, Luo Zhexian, Ju Jianhua. Differences between dynamics factors for interannual and decal variations of rainfall over the Yangtze River valley during flood seasons[J]. Chinese Science Bulletin, 2006, 51(1):104-109.
[平凡, 罗哲贤, 琚建华. 长江流域汛期降水年代际和年际尺度变化影响因子的差异[J]. 科学通报, 2006, 51(1):104-109.]
[75] Yang L N, Wu B Y. Interdecadal variations of the East Asian winter surface air temperature and possible causes[J]. Chinese Science Bulletin, 2013, 58:3 969-3 977.
[76] Screen J A, Simmonds I. Exploring links between Arctic amplification and mid-latitude weather[J]. Geophysical Research Letters, 2013, 40, doi:10.1002/grl.50174.
[77] Wu B, Zhang R, Wang B, et al. On the association between spring Arctic Sea ice concentration and Chinese summer rainfall[J]. Geophysical Research Letters, 2009, 36(9):L09501, doi:10.1029/2009GL037299.
[78] Tang Q, Zhang X, Francis J A. Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere[J]. Nature Climate Change, 2014, 4, doi:10.1038/NCLIMATE2065.
[1] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[2] 武丰民,李文铠,李伟. 北极放大效应原因的研究进展[J]. 地球科学进展, 2019, 34(3): 232-242.
[3] 季顺迎;岳前进;王瑞学. 海冰动力学数值方法研究进展[J]. 地球科学进展, 2004, 19(6): 963-970.
阅读次数
全文


摘要