地球科学进展 ›› 2014, Vol. 29 ›› Issue (8): 903 -912. doi: 10.11867/j.issn.1001-8166.2014.08.0903

上一篇    下一篇

非球形粒子光散射计算研究的进展综述
许丽生 1, 2( ), 陈洪滨 1, 丁继烈 2, 夏志业 1, 3, 4   
  1. 1.中国科学院大气物理研究所中层大气与全球环境探测实验室, 北京, 100029
    2. 成都信息工程学院大气辐射与卫星遥感实验室, 四川, 成都, 610225
    3. 中国科学院大学, 北京, 100049
    4. 成都信息工程学院资源环境学院, 四川, 成都, 610225
  • 收稿日期:2014-02-11 修回日期:2014-07-15 出版日期:2014-09-16
  • 基金资助:
    国家重点基础研究发展计划项目“多尺度气溶胶综合观测和时空分布规律研究”课题“气溶胶对气候影响的模拟和评估”(编号:2010CB950804);公益性行业(气象)科研专项经费项目“多部雷达组网适应性观测技研术究与数据质量控制”(编号:GYHY201106046)资助

An Overview of the Advances in Computational Studies on Light Scattering by Nonspherical Particles

Lisheng XU 1, 2( ), Hongbin CHEN 1, Jilie DING 2, Zhiye XIA 1, 3, 4   

  1. 1. LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2. Atmospheric Radiation & Satellite Remote Sensing Laboratory, Chengdu University of Information Technology, Chengdu, 610225 China
    3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
    4. College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
  • Received:2014-02-11 Revised:2014-07-15 Online:2014-09-16 Published:2014-09-17

介质的光散射在许多科学和工程领域中, 如光学、电磁学、工程物理、天体物理、大气科学、海洋学、生态学、生物物理学等都有重要的应用。由于其重要性、复杂性和困难性, 非球形粒子光散射已成为国际上光散射理论研究的焦点和前沿课题。就粒子光散射, 特别是非球形粒子光散射的计算方法及其研究进展进行扼要综述。首先, 从光散射的理论基础出发, 指出过去广泛应用的球形粒子光散射LorenzMie理论的局限性, 从粒子非球形性对散射模式影响的本质, 讨论球形粒子LorenzMie散射与非球形粒子光散射的不等效性。在此基础上扼要地阐述了现代非球形粒子光散射计算研究的进展, 包括精确的理论解法、一些重要的数值技术以及2个重要的近似解法, 即光学软粒子近似和几何光学近似。并指出, 近年来为了表示自然界中近于层状和更复杂粒子的光散射特性, 层状粒子模型和扩展边界条件法(EBCM)正在成为热门的研究领域, 是2个值得注意的发展动向。最后, 简要地讨论了非球形粒子光散射计算研究所面临的挑战及其未来的发展方向。

Electromagnetic scattering by particles is a field of active research with high relevance for such diverse fields as atmospheric science, oceanography, astronomy, and engineering sciences, with specific applications in remote sensing, ecological environment, ocean optics, climate research, scattering by interplanetary dust grains, bio-optical imaging, antenna theory, particle sizing technology, and coating technology. Since its importance, complexity and difficulty, light scattering by nonspherical particles has become an international focus and frontiers of light scattering research and made a lot of studies. In the paper, some basic and important problems on light scattering calculations by nonspherical particles are briefly discussed and summarized. Based on the theoretical foundation of light scattering, the limitations of LorenzMie theory of spherical particles which have been widely used since the 1950 s are pointed out first. From the nature of the impact of nonsphericity of particles on scattering model, the nonequivalence of both the LorenzMie scattering by spherical particles and the light scattering by nonspherical particles is further discussed. Then, the research progresses of modern light scattering calculations by nonspherical particles are expounded and discussed, including accurate theoretical methods, some important numerical methods and two approximation algorithms, namely the approximations by optically soft particles and geometric optics approximation. We also point out that in order to express the light scattering characteristics by quasilayered and more complex particles in nature, the layered particle model and EBCM(Extended Boundary Condition Method)are becoming a hot research field in recent years, which are two noteworthy development trends. Finally, the challenge of the research on light scattering calculation methods by nonspherical particles and the future developments are briefly discussed.

中图分类号: 

图1 尘埃气溶胶粒子的扫描电子显微镜图像 [ 18 ]
Fig.1. Scanning electron photographs of dust particles [ 18 ]
图2 冰晶粒子图像:准球形、柱状、盘状和子弹玫瑰花状 [ 19 ]
Fig.2 Ice crystal habits: quasi-spherical, column-type, plate-type, and bullet rosette particles [ 19 ]
表1 一些重要的非球形粒子光散射算法
Table 1 Some important optical scattering methods for nonspherical particles
计算方法 尺度参数x 粒子的形状和结构 优点 缺点
TMM (T-matrix method)
T-矩阵法
<180 适于各种均匀对称粒子, 包括偏心夹杂物粒子、层状粒子和多球体集合等 是严格计算共振非球形粒子光散射最强有力和广泛使用的方法之一 当粒子x 180或用于任意粒子形状时, 存在数值稳定性和收敛性问题
FDTD (finite difference time domain method)
有限差分时域法
≤ 20 可用于任意粒子的形状和非均匀性粒子 概念简单、易于实现, 适用于形状复杂和非均匀小粒子的光散射 存在一系列局限性, 只适合于粒子x ≤ 20的光散射计算
SVM (separation of variables method)
分离变量法
<40 可用于长/扁椭球和更为复杂的粒子, 特别是层状粒子的光散射 能提供非常精确的计算结果 当粒子x或折射指数较大时, 易产生病态条件
PMM (point
-matching method)
点匹配法
适用于比较简单的粒子的形状和结构 一般能提供比较精确的计算结果 在计算中会得到不精确或数值不稳定的结果。
GPMM(generalised PMM )
广义PMM法
适用于形状和结构比较简单的粒子 解具有更清晰的收敛性, 结果更精确 对具有不同形状的粒子光散射, 缺乏灵活性和实用性
DDA (discrete dipole approxim. ) 离散偶极子近似, 或耦合偶极子法(CDM) [注] 适用于较小粒子的散射问题 可用到不同形状的散射体, 包括多粒子组合和具有覆盖层粒子等 物理概念简单, 散
射条件能自动满足, 可用较少的未知量进行计算
存在数值精度、收敛速度慢、需要重复计算等问题
MoM (method of moments) 矩法 适用于较小粒子的散射问题 可用到不同形状的散射体, 包括具有覆盖层粒子和随机凹凸不平的球形粒子等 物理概念简单,
散射条件能自动满足, 可用较少的未知量进行计算
存在数值精度、收敛速度慢、需要重复计算等问题
ADA(anomalous diffraction approxim.)
异常衍射近似
MADA(modified anomalous diffraction approxim.)
改进异常衍射近似
x  1 可用到形状比较复杂的粒子的光散射 适用于大尺度光学软粒子的光散射, 具有算法快速和较精确等优点。
MADA具有计算更加简单和更加精确等优点
GOA (geometric optics approxima.)
几何光学近似
>>1 任意形状和大尺度粒子 精度随尺度与波长之比而增大 不适用于小粒子光散射
层状粒子模型和EBCM(extended
boundary condition method)
扩展边界条件法
各种非球形和非均匀粒子 可处理各种非球形和非均匀粒子的光散射 实际的数值计算仍存在挑战
[1] Ding J, Xu L. Study on convergence problem of T-matrix approach of light scattering by randomly oriented axially symmetric nonspherical particles[C]∥Preprints of Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. New York: AMS, 1998: 257-260.
[2] Ding J, Xu L. Convergence of T-matrix approach for randomly oriented, non-absorbing, nonspherical Chebyshev particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63: 163-174.
[3] Ding J, Xu L. Light scattering characteristics by small ice circular cylinders in visible, 1.38 μm, and some infrared wavelengths[J]. Optical Engineering, 2002, 41: 2 252-2 266.
[4] Zhang J, Xu L. Light scattering by absorbing hexagonal ice crystals in cirrus clouds[J]. Applied Optics, 1995, 34: 5 867-5 874.
[5] Xu L, Zhang G, Ding J, et al. Light scattering by polydispersions of randomly oriented hexagonal ice crystals in cirrus couds: Phase function analyses[J]. Optics, 1997, 106: 103-114.
[6] Xu L, Zhang J. Light scattering by randomly oriented hexagonal ice crystals: Improved diffraction computations and diffraction properties of ice crystals[J]. Optics, 1996, 101: 161-165.
[7] Zhang G, Xu L, Takamura T, et al. Single- and multiple-scattering properties of ice crystals in 1.38 μm wavelength and its potential applications in satellite remote sensing of cirrus cloud properties[J]. Chinese Science Bulletin, 1999, 44: 650-654.
[8] Xu L, Ding J, Cheng Y S Andrew. Scattering matrix of infrared radiation by ice finite circular cylinders[J]. Applied Optics, 2002, 41: 2333-2348.
[9] Xu Lisheng. Several Frontiers of Atmospheric Radiation and Remote Sensing Research[M]. Beijing: Meteorological Press, 1996:170-180.
[许丽生. 大气辐射和卫星遥感一些前沿问题的研究, 现代大气科学前沿与展望[M]. 北京: 气象出版社, 1996: 170-180.]
[10] Xu Lisheng, Ding Jilie, Zhang Qiang. Light Scattering Theory and Development of Nonspherical Particles[M]. Beijing: Meteorological Press, 2000: 180-184.
[许丽生, 丁继烈, 张强. 非球形粒子光散射理论的研究, 21世纪初大气科学回顾与展望[M]. 北京: 气象出版社, 2000: 180-184.]
[11] Zhao Jianqi, Shi Guangyu. Light scattering properties of small nonspherical particles[J]. Science Technology and Engineering, 2005, 5(24): 1 872-1 875.
[赵剑琦, 石广玉. 非球形小粒子的光散射特性[J]. 科学技术与工程, 2005, 5(24): 1 872-1 875.]
[12] Gu Xingfa, Chen Liangfu, Yu Tao, et al. Multi-angular polarized characteristics of cirrus clouds[J]. Journal of Physics, 2008, 57(8): 5323-5332.
[顾行发, 陈良富, 余涛, 等. 卷云多角度偏振特性研究[J]. 物理学报, 2008, 57(8): 5323-5332.]
[13] Fan Meng, Chen Liangfu, Li Shenshen, et al. Scattering properties of non-spherical particles in the CO2 shortwave infrared band[J]. Journal of Physics, 2012, 61(20): 202-204.
[范萌, 陈良富, 李莘莘, 等. 非球形气溶胶粒子短波红外散射特性研究[J]. 物理学报, 2012, 61(20): 202-204.]
[14] Mishchenko M I, Hovenier J W, Travis L D. Light Scattering by Nonspherical Particles[M]. New York : Academic Press, 2000.
[15] van de Hulst H C. Light Scattering by Small Particles[M]. New York: Dover, 1981.
[16] Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles[M]. UK: Cambridge University Press, 2002.
[17] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Wiley & Sons, 1983.
[18] Kalashnikova O V, Sokolik I N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87: 137-166.
[19] McCrone W C. The Particle Atlas: A Photomicrographic Reference for the Microscopical Identification of Particulate Substances[M]. New York: Ann Arbor Science, 1967.
[20] Waterman P C. Matrix formulation of electromagnetic scattering[C]. Proceedings of the IEEE, 1965:805-812.
[21] Mishchenko M I, Travis L D, Mackowski D W. T-matrix computations of light scattering by nonspherical particles: A review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55: 535-575.
[22] Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32: 4652-4666.
[23] Mishchenko M I, Travis L D, Macke A. Scattering of light by polydisperse, randomly oriented, finite circular cylinders[J]. Applied Optics, 1996, 35: 4927-4940.
[24] Wriedt T. A review of elastic light scattering theories[J]. Particle & Particle Systems Characterization, 1998, 15: 67-74.
[25] Kokhanovsky A. Optics of Light Scattering Media[M]. UK: John Wiley, 1999.
[26] Liou K N. An Introduction to Atmospheric Radiation[M]. New York: Academic, 2002.
[27] Kahnert F M. Numerical methods in electromagnetic scattering theory[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79/80:775-824.
[28] Yee S K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1996, 14: 302-307.
[29] Taflove A. Advances in Computational Electromagnetics[M]. Boston, MA: Artech House, 1998.
[30] Taflove A, Hagness S C. Computational Electromagnetics[M]. Boston, MA: Artech House, 2000.
[31] Yang P, Liou K N. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space[J]. Journal of the Optical Society of America, 1996, A13: 2072-2085.
[32] Sun W, Fu Q, Chen Z. Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions[J]. Applied Optics, 1999, 38: 3141-3151.
[33] Sun W, Fu Q. Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices[J]. Applied Optics, 2000, 39: 5569-5578.
[34] Yang P, Kattawar G W, Liou K N, et al. Choice of cartesian grid configurations for applying the finite-difference time domain method to electromagnetic scattering by dielectric particles[J]. Applied Optics, 2004, 43:4611-4624.
[35] Baran A J, Yang P, Havemann S. Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T matrix and the finite-difference time-domain methods[J]. Applied Optics, 2001, 40: 4376-4386.
[36] Al-Rizzo H M, Tranquilla J M. Electromagnetic scattering from dielectrically coated axisymmetric objects using the generalized point-matching technique I. Theoretical formulation[J]. Journal of Computational Physics, 1995, 119: 342-355.
[37] Lakhtakia A, Mulholland G W. On two numerical techniques for light scattering by dielectric agglomerated structures[J]. Journal of Research of the National Institute of Standards and Technology, 1993, 98(6): 699-716.
[38] Draine B T. The discrete dipole approximation for light scattering by irregular targets[M]∥Mischenko M I, Hovenier J W, Travis L D, eds. Light Scattering by Nonspherical Particles. New York: Academic Press, 2000.
[39] Yurkin M A, Maltsev V P, Hoekstra A G. Convergence of the discrete dipole approximation. Part I: Theoretical analysis[J]. Journal of the Optical Society of America, 2006, A23(10): 2 578-2 591.
[40] Yurkin M A, Maltsev V P, Hoekstra A G. Convergence of the discrete dipole approximation. Part II: An extrapolation technique to increase the accuracy[J]. Journal of the Optical Society of America, 2006, A23(10): 2592-2601.
[41] Sharma S K, Somerford D J. Light Scattering by Optically Soft Particles: Theory and Applications[M]. Springer, Chichester, UK: Praxis Publishing Ltd, 2006.
[42] Kokhanovsky A A. Light Scattering Reviews 3, Scattering and Reflection[M]. Springer, Chichester, UK: Praxis Publishing Ltd, 2008.
[43] Sun W, Fu Q. Anomalous diffraction theory for arbitrarily oriented hexagonal crystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63: 727-737.
[44] Fu Q, Sun W B, Yang P. Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths[J]. Journal of the Atmospheric Scineces, 1999, 56: 2937-2947.
[45] Mitchell D L. Parameterization of the Mie extinction and absorption coefficients for water clouds[J]. Journal of the Atmospheric Sciences, 2000, 57: 1311-1326.
[46] Mitchell D L. Effective diameter in radiation transfer: Definition, applications and limitations[J]. Journal of the Atmospheric Sciences, 2002, 59: 2330-2346.
[47] Cai Q, Liou K N. Polarized light scattering by hexagonal ice crystals: Theory[J]. Applied Optics, 1982, 21: 3569-3580.
[48] Zhang Z, Yang P, Kattawar G W, et al. Geometrical-optics solution to light scattering by droxtal ice crystals[J]. Applied Optics, 2004, 43: 2490-2499.
[49] Li R, Han X, Shi L, et al. Debye series for Gaussian beam scattering by a multilayered sphere[J]. Applied Optics, 2007, 46: 4804-4812.
[50] Yousif H A, Elsherbeni A Z. Electromagnetic scattering from an eccentric multilayered cylinder at oblique incidence[J]. Journal of Electromagnetic Waves and Applications, 1999, 13: 325-336.
[51] Han Y, Zhang H, Sun X. Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries[J]. Applied Physics B, 2006, 84: 485-492.
[52] Barber P W, Hill S C. Light Scattering by Particles: Computational Methods[M]. Singapore: World Scientific, 1990.
[53] Tsang L, Kong J A, Ding K H. Scattering of Electromagnetic Waves[M]. New York: John Wiley & Sons Inc., 2000.
[54] Doicu A, Wriedt T, Eremin Y A. Light Scattering by Systems of Particles: Null-field Method with Discrete Sources: Theory and Programs[M]. New York: Springer Series in Optical Sciences, 2006:124.
[55] Doicu A, Wriedt T. Extended boundary condition method with multipole sources located in the complex plane[J]. Optics Communications, 1997, 139: 85-91.
[56] Mishchenko M I, Videen G, Babenko V A, et al. T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 88: 357-406.
[57] Mishchenko M I, Videen G, Babenko V A, et al. Comprehensive T-matrix reference database: A 2004-2006 update[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106: 304-324.
[58] Mishchenko M I, Videen G, Babenko V A, et al. Comprehensive T-matrix reference database: A 2006-2007 update[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109: 1 447-1 460.
[59] Farafonov V G, Voshchinnikov N V. Light scattering by a multilayered spheroidal particle[J]. Applied Optics, 2012, 51(10): 1 586-1 597.
[1] 胡泽勇,程国栋,谷良雷,李茂善,马耀明. 青藏铁路路基表面太阳总辐射和温度反演方法[J]. 地球科学进展, 2006, 21(12): 1304-1313.
[2] 刘玉芝, 肖稳安, 石广玉. 论大气二氧化碳温室效应的饱和度[J]. 地球科学进展, 2002, 17(5): 653-658.
阅读次数
全文


摘要