地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1304 -1313. doi: 10.11867/j.issn.1001-8166.2006.12.1304

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

青藏铁路路基表面太阳总辐射和温度反演方法
胡泽勇 1,程国栋 1,谷良雷 1,李茂善 1,马耀明 2   
  1. 1.中国科学院寒区旱区环境与工程研究所高原大气物理研究室,甘肃 兰州 730000;2.中国科学院青藏高原研究所,北京 100085
  • 收稿日期:2006-10-11 修回日期:2006-11-01 出版日期:2006-12-15
  • 通讯作者: 胡泽勇 E-mail:zyhu@lzb.ac.cn
  • 基金资助:

    中国科学院知识创新工程重大项目“青藏铁路工程与多年冻土相互作用及其环境效应”(编号:KZCX1-SW-04);国家重点基础研究发展规划项目“青藏高原环境变化及其对全球变化的响应与适应对策”(编号:2005CB422003);国家自然科学基金重大国际(地区)合作研究项目“西藏高原能量水循环降雨共同观测研究”(编号:40520140126)共同资助.

Calculating Method of Global Radiation and Temperature on the Roadbed Surface of Qinghai-Xizang Railway

Hu Zeyong 1,Cheng Guodong 1,Gu Lianglei 1,Li Maoshan 1,Ma Yaoming 2   

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Division of Plateau Atmospheric Physics, Lanzhou 730000,China; 2.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085,China
  • Received:2006-10-11 Revised:2006-11-01 Online:2006-12-15 Published:2006-12-15

通过对“青藏铁路乌丽垭口大桥段不同走向路基表面热状况观测试验”资料的分析,改进了已有的青藏铁路边坡表面上的太阳总辐射和表面温度反演方法,并利用中日合作“青藏高原能量水分循环试验”(GAME-Tibet)沿青藏公路长时间序列地面观测资料,建立了地理位置和海拔高度与反演系数之间的统计关系,将该反演方法推广到青藏铁路全线。

The calculating method of global radiation and surface temperature on the roadbed of the Qinghai-Xizang Railway is improved by analyzing the experiment data observed on roadbeds with different railway directions at Wuli. In order to apply this method to all roadbed of the Qinghai-Xizang Railway, a statistical correlaion of calculating parameters with roadbed location and elevation is set up. The long term date series of GAME-Tibet (GAME experiment of engine and water cycle in the Tibetan Plateau which was implemented under the cooperation project between two sides of China and Japan) obtained from the observation site along the Qinghai-Xizang Railway is involved to develop the method.

中图分类号: 

[1] Cheng Guodong. On the zonation of high-altitude permafrost in China[J]. Acta Geographica Sinica, 1984, 39(2): 185-193.[程国栋.我国高海拔多年冻土地带性规律之探讨[J].地理学报, 1984, 39(2): 185-193.]

[2] Wu Qingbai, Li Xin, Li Wenjun. Computer simulation and mapping of the regional distribution of permafrost along the Qinghai-Xizang highway[J]. Journal of Glaciology and Geocryology, 2000, 22(4): 322-326.[吴青柏,李新,李文君.青藏公路沿线冻土区域分布计算机模拟与制图[J].冰川冻土, 2000, 22(4): 322-326.]

[3] Zhang Luxin. Regularity of ground temperature variation in Qinghai-Tibet plateau permafrost region and its effect on subgrade stability[J]. China Railway Science, 2000, 21(1): 37-47.[张鲁新.青藏铁路高原冻土区地温变化规律及其对路基稳定性影响[J].中国铁道科学, 2000, 21(1): 37-47.]

[4] Li Xin, Cheng Guodong. A GIS aided response model of high altitude permafrost to global change [J]. Science in China(Series D), 1999, 29(2):185-192.[李新,程国栋.高海拔多年冻土对全球变化的响应模型[J].中国科学:D, 1999, 29(2): 185-192.]

[5] Cheng Guodong. The impact of local factors on permafrost distribution and its inspiring for design Qinghai-Xizang railway [J]. Science in China (Series D), 2003, 33(6): 602-607.[程国栋.局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J].中国科学:D, 2003, 33(6): 602-607.]

[6] Gong Yuanfa, Duan Tingyang, Chen Longxun, et al. Outline of observational study of Sino-Japan cooperative program on Asian monsoon over Tibetan plateau[J]. Journal of Chengdu Institute of Meteorology,1997, (1): 18-27.[巩远发,段廷扬,陈隆勋,.《中日亚洲季风机制合作研究计划》青藏高原观测研究概况[J].成都气象学院学报, 1997, 11(1): 18-27.]

[7] Qian Zheng'an, Jiao Yanjun. Advances and problems on Qinghai-Xizang plateau meteorology research [J]. Advances in Earth Science,1997,12(3):207-216.[钱正安,焦彦军.青藏高原气象学的研究进展和问题[J].地球科学进展, 1997, 12(3): 207-216.]

[8] Ji Guoliang, Zou Jiling, Lu Lanzhi. The seasonal variation of surface heating field over the northern Qinghai-Xizang plateau [J]. Plateau Meteorology,1997,16(1):1-9.[季国良, 邹基玲, 吕兰芝. 藏北高原地面加热场的季节变化[J]. 高原气象, 1997, 16(1): 1-9.]

[9] Zhang Jijia, Zhu Baozhen, Zhu Fukang, et al. Progress in Climatology of Qinghai-Tibet Plateau [M].Beijing: Science Press, 1998: 92-123.[章基嘉,朱抱真,朱福康,.青藏高原气候学进展[M].北京:科学出版社, 1998: 92-123.]

[10] Zhou Mingyu, Xu Xiangde, Bian Lin'gen, et al. The Study of Atmosphere Boundary Layer Observation Analysis and Dynamic of the Tibetan Plateau[M].Beijing: Science Press, 2000:17-99.[周明煜,徐祥德,卞林根,.青藏高原大气边界层观测分析与动力学研究[M].北京:科学出版社, 2000: 17-99.]

[11] Ji Guoliang, Yao Lanchang, Yuan Fumao, et al. Characteristics of the surface and atmospheric heating field over Qinghai-Xizang Plateau in winter of 1982 [J]. Science in China (Series B),1986,(2): 214-224. [季国良,姚兰昌,袁福茂,. 1982年冬季青藏高原地面和大气加热场特征[J].中国科学:B, 1986, (2): 214-224.]

[12] Hu Zeyong, Ma Yaoming, Liu Liping. A successful pilot test in Sino-Japanese research program of "energy-water-cycling experimentation" on the Qinghai-Tibet plateau[J]. Bulletin of the Chinese Academy of Sciences, 1998, 13(3): 224-225. [胡泽勇,马耀明,刘黎平.中日合作成功进行青藏高原能量水分循环试验预试验[J].中国科学院院刊, 1998, 13(3): 224-225.]

[13] Wang Jiemin. Land surface process experiments and interaction study in China―From HEIFE to IMGRASS and GAME-TIBET/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294. [王介民.陆面过程实验和地气相互作用研究——HEIFEIMGRASSGAME-Tibet/TIPEX[J].高原气象, 1999, 18(3): 280-294.]

[14] Xu Xiangde, Zhou Mingyu, Chen Jiayi, et al. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang plateau [J]. Science in China (Series D),2001, 31(5): 428-440.[徐祥德,周明煜,陈家宜,.青藏高原地气过程动力、热力结构综合物理图像[J].中国科学:D, 2001, 31(5): 428-440.]

[15] Hu Zeyong, Qian Zeyu, Cheng Guodong, et al. Influence of solar radiation on embankment surface thermal regime of the Qinghai-Xizang railway [J]. Journal of Glaciology and Geocryology,2002,24(2):121-128.[胡泽勇,钱泽雨,程国栋,.太阳辐射对青藏铁路路基表面热状况的影响[J].冰川冻土, 2002, 24(2): 121-128.]

[16] Wang Keli, Cheng Guodong. Thermodynamic model of the ground surface and the roadbed surface along the Qinghai-Tibetan railway(): Physical process and experimental scheme [J]. Journal of Glaciology and Geocryology, 2002, 24(6):759-764.[王可丽,程国栋.青藏铁路沿线地表和路基表面热力学模式(I):物理过程与实验方案[J].冰川冻土, 2002, 24(6): 759-764.]

[17] Kondrat’yev J. Radiation in the Atmosphere[M]. New York: Academic Press, 1969: 912-916.

[18] Werner E, Wayne R, Roger A. Land-atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate[J]. Global Change Biology,2000, 6(suppl.1): 84-114.

[19] Wang Yongsheng. Atmospheric Physics[M]. Beijing:China Meteorological Press,1987:149-208.[王永生.大气物理学[M].北京:气象出版社, 1987:149-208.]

[1] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[2] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[3] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[4] 权凌, 周纪, 李明松, 代冯楠, 李国全. 基于时间序列建模的城市热岛时间尺度成分分离方法与应用[J]. 地球科学进展, 2014, 29(6): 723-733.
[5] 解国爱,王宗秀,张庆龙,吕赟珊,邹旭. 江西永平铜矿区古构造应力场与构造演化[J]. 地球科学进展, 2013, 28(5): 608-617.
[6] 肖子牛, 钟琦, 尹志强, 周立旻, 宋燕, 韩延本, 黄聪, 潘静, 赵亮. 太阳活动年代际变化对现代气候影响的研究进展[J]. 地球科学进展, 2013, 28(12): 1335-1348.
[7] 王康, 张廷军. 中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J]. 地球科学进展, 2013, 28(11): 1269-1275.
[8] 祝善友,张桂欣. 近地表气温遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 724-730.
[9] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[10] 田苗,王鹏新,孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J]. 地球科学进展, 2010, 25(7): 698-705.
[11] 张克存,屈建军,牛清河,张伟民,韩庆杰. 青藏铁路沿线砾石方格固沙机理风洞模拟研究[J]. 地球科学进展, 2010, 25(3): 284-289.
[12] 周纪,陈云浩,李京,马伟,占文凤. 城市区域热辐射方向性研究进展[J]. 地球科学进展, 2009, 24(5): 497-505.
[13] 占文凤,周纪,马伟. 基于真实结构的地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2009, 24(12): 1309-1317.
[14] 黄妙芬;刘绍民;刘素红;朱启疆. 地表温度和地表辐射温度差值分析[J]. 地球科学进展, 2005, 20(10): 1075-1082.
阅读次数
全文


摘要