地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 608 -617. doi: 10.11867/j.issn.1001-8166.2013.05.0608

研究论文 上一篇    下一篇

江西永平铜矿区古构造应力场与构造演化
解国爱 1,王宗秀 2,张庆龙 1,吕赟珊 1,邹 旭 1   
  1. 1.南京大学地球科学与工程学院,江苏 南京 210093; 
    2.中国地质科学院地质力学研究所,北京 100081
  • 收稿日期:2012-11-19 修回日期:2013-02-01 出版日期:2013-05-10
  • 基金资助:

    中国地质调查局项目“中国显生宙重要地区陆壳聚散的基本框架与成矿制约”(编号:1212011120160)资助

A Study of the Palaeotectonic Stress Fields and Tectonic Evolution in the Yongping Copper Deposit, Jiangxi Province

Xie Guoai 1, Wang Zongxiu 2, Zhang Qinglong 1, Lü Yunshan 1, Zou Xu 1   

  1. 1.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China;2.Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
  • Received:2012-11-19 Revised:2013-02-01 Online:2013-05-10 Published:2013-05-10

利用多重反演方法(Multiple Inverse Method,MIM)恢复永平铜矿多期古构造应力场,该方法可以划分形成断层擦痕的多个古构造应力期次。研究表明,永平矿区印支期以来至少受到3期古构造应力场作用,进而探讨了永平铜矿构造演化历史。第一期构造应力场为EW方向的近水平挤压,形成轴向近SN的褶皱,以及走向近南北的逆断层;第二期构造应力场为NWSE方向近水平挤压,伴随着岩体的侵入,导致层间破碎带的矽卡岩化和矿体形成;第三期构造应力场为EW方向的再次挤压作用,造成控矿断层推覆距离加大,混合岩和矽卡岩破碎带向西逆冲推覆到晚古生代地层之上。

Multiple Inverse Method is useful for separating stresses from heterogeneous faultslip data. By using the method applied to fault slip data in the Yongping Copper Deposit, three phases of palaeotectonic stress were found since the Indosinian. At first, EW direction of compressive stress field formed SN direction of folds, faults and interlayer fracture zone. Then the tectonic stress field transformed as NWSE direction. Accompanied by the intrusion of pluton, thermal metamorphism occurred on interlayer fracture zone.Hydrochloride rock changed into skarn and mineralization. At last, EW direction of compressive stress leads to increasing nappe distance.As a result, migmatite and skarn thrust over Paleozoic strata from east to west.

中图分类号: 

[1]Carey E. Recherche des directions principales de contraintes associees au jeu d’une population de failles[J]. Revue de Géographie  Physique et  Gédogie Dynamique,1979,21:57-66.

[2]Fry N. A robust approach to the calculation of paleostress fields from fault plane data: Discussion[J]. Journal of Structural Geology,1992,14:635-637.

[3]Zhang Y Q, Dong S W, Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province,eastern China[J]. Tectonophysics,2003,363: 243-258.

[4]Shan J, Suen H, Lin G. Separation of polyphase fault/slip data: An objective-function algorithm based on hard division[J]. Journal of Structural Geology,2003,25:829-840.

[5]Cao Daiyong, Zhan Wenfeng, Zhang Jun, et al. Study on the palaeotectonic stress fields and tectonic evolution in Handan-Fengfeng Coal Mining area[J]. Coal Geology of China, 2005, 17(5):1-3.[曹代勇,占文峰,张军,等. 邯峰矿区古构造应力场与构造演化[J].中国煤田地质,2005,17(5):1-3.]

[6]Yamaji A. The multiple inverse method:A new technique to separate stresses from heterogeneous faultslip data[J].Journal of Structural Geology, 2000,22: 441-452.

[7]Yamaji A. Multiple inverse method applied to mesoscale faults in mid Quaternary sed-iments near the triple trench junction offcentral Japan[J]. Journal of Structural Geology, 2000,22(4): 429-440.

[8]Yamaji A . Are the solutions of stress inversion correct? Visualization of their reliability and the separation of stresses from heterogeneous fault-slip data[J].Journal of Structural Geology,2003,25:241-252.

[9]Chan L S, Shen W L,Pubellier M. Polyphase rifting of greater Pearl River Delta region (South China): Evidence for possible rapid changes in regional stress con figuration[J]. Journal of Structural Geology,2010,32:746-754.

[10]Li Xiaofeng, Yasushi Watanabe, Qu Wenjun. Textures and geochemical characteristics of granitic rocks in the Yongping climaxtype Cu-Mo deposit,Jiangxi,southeastern China,and their alteration,mineralization and tectonic regime[J].Acta Petrlogica Sinica, 2007,23(10):2 353-2 365.[李晓峰,Yasushi Watanabe,屈文俊. 江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义[J]. 岩石学报,2007,23(10):2 353-2 365.]

[11]Zhu Bi, Jiang Shaoyong, Ding Xin, et al. Hydrothermal alteration and petrogenesis of granites in the Yongping Copper Dposit,Jiangxi Province:Constraints from mineral chemistry,element geochemistry,and Sr-Nd-Hf isotopes[J]. Acta Petrlogica Sinica,2008,24(8):1 900-1 916.[朱碧,蒋少涌,丁昕,等. 江西永平铜矿区花岗岩热液蚀变与岩石成因:矿物化学、元素地球化学和Sr-Nd-Hf同位素制约[J]. 岩石学报,2008,24(8):1 900-1 916.]

[12]Liu Xun, Huang Zhen. Tectono-geochemistry in the Yongping Copper Ore Field, Jiangxi[J]. Geological Review, 1992,38(4):302-310.[刘迅,黄震. 江西永平铜矿田构造地球化学[J]. 地质论评,1992,38(4):302-310.]

[13]Zhao Changsheng. The feature of syngenetic plume-sedimentation in Yongpin Copper Deposit, Jiangxi[J]. Copper Engineering, 2001,3:48-50.[赵常胜. 江西永平铜矿床以喷流成矿为主体的成因特征[J]. 铜业工程,2001,3:48-50.]

[14]Liao Zongting, Liu Jinshui. Evidences of submarine volcanic hydrothermal sedimentmineralization in Yongping Copper Deposit[J]. Copper Engineering, 2003, 1:31-35.[廖宗廷,刘金水. 永平铜矿海底火山热液沉积成矿作用的依据[J]. 铜业工程,2003,1:31-35.]

[15]Du Lingtong. Sources of ore-forming material and genesis analysis of Yongping Copper Deposit, Jiangxi[J]. Resources Environment and Engineering, 2005, 19(1):4-11.[杜灵通. 江西永平铜矿成矿物质来源及矿床成因分析[J]. 资源环境与工程,2005,19(1):4-11.]

[16]Tian Jinghui, Ni Pei, Fan Jianguo. Ore-forming fluid characteristics research of Yongping Copper Deposit[J]. Contributions to Geology and Mineral Resources Research,2001,16(1):24-27.[田京辉,倪培,范建国. 永平铜矿成矿流体特征研究[J]. 地质找矿论丛,2001,16(1):24-27.]

[17]Ni Pei, Tian Jinghui, Zhu Xiaoting, et al. Fluid inclusion studies on footwall stringer system  mineralization of Yongping Massive Copper Deposit, Jiangxi Province, China[J].Acta Petrologica Sinica, 2005,21(5):1 139-1 146.[倪培,田京辉,朱筱婷,等. 江西永平铜矿下盘网脉状矿化的流体包裹体研究[J]. 岩石学报,2005,21(5):1 139-1 146.]

[18]Ding Xin, Jiang Shaoyong, Ni Pei, et al. Zircon SIMS U-Pb geochronology of host granitoids in Wushan and Yongping Copper Deposits, Jiangxi Province[J]. Geological Journal of China Universities, 2005,11(3):383-389.[丁昕,蒋少涌,倪培,等. 江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学[J]. 高校地质学报,2005,11(3):383-389.]

[19]Angelier J. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics,1979,56 (3/4):17-26.

[20]Angelier J. Tectonic analysis of fault slip data sets[J].Journal of Geophysical Research, 1984,89: 5 835-5 848.

[21]Gephart J W, Forsyth D W. Animproved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. Journal of Geophysical Research,1984, 89: 9 305-9 320.

[22]Ishii E, Yasue K, Takenobu T, et al. Three-dimensional distribution and hydrogeological properties of the Omagari Fault in the Horonobe area, northern Hokkaido Japan[J].Journal of the Geological Society of Japan, 2006,112: 301-314.

[23]Ishii E, Fukushima T. A case study of analysis of faul: Ts in Neogene siliceous rocks[J]. Journal of the Japan Society of Engineering Geology, 2006, 47: 280-291.

[24]Kuniyasu M, Yamada Y. Structural analysis of deep zones in southern central Hokkaido, northern Japan[J]. Journal of the Japanese Association for Petroleum Technology, 2004, 69: 131-144.

[25]Kusuhashi N,Yamaji A. Miocene tectonics of SW Japan as inferred from the Kuma Group, Shikoku[J]. Journal of the Geological Society of Japan, 2001, 107: 25-40.

[26]Eliassi M, Ahmadian S. Determination of the geometrical configuration of σ1 trajectory in KanKaraj area (Central Alborz) using Multiple Inverse Method[J]. Geosciences, 2007, 67: 140-149.

[27]Eliassi M, Mohajjel M,Mesbahi F. Paleostress analysis of horizontal Plio-Quaternary deposits in the NW of Zanjan[J]. Journal of Earth and Space Physics, 2008, 34: 27-42.

[28]Lunina O V, Gladkov A S. Active faults and crustal stress in the northeastern flank of the Baikal rift system[J]. Russian Geology and Geophysics, 2008, 49: 113-123.

[29]Lunina O X, Gladkov A S, Novikov I S, et al. Geometry of the fault zone of the 2003 Ms=7.5 Chuya earthquake and associated stress fields, Gorny Altai[J]. Tectonophysics, 2008, 453: 276-294.

[30]Haví[AKrˇ] J, Gilíkov H. Results of the structural study of the Culm sediments near Suchdol and Odrou[J]. Geological Research in Moravia and Silesia, 2007, 14:52-55.

[31]Sippel J, Scheck-Wenderoth M, Reicherter K, et al. Paleostress states at the south-western margin of the Central European Basin System—Application of fault-slip analysis to unravel a polyphase deformation pattern[J]. Tectonophysics, 2009, 470: 129-146.

[32]Viola G, Venvik Ganerd G, Wahlgren C H. Unraveling 1.5 Ga of brittle deformation history in the Laxemar-Simpevarp area, southeastern Sweden: A contribution to the Swedish site investigation study for the disposal of highly radioactive nuclear waste[J].Tectonics,2009,28: TC5007.

[33]Veloso E E, Anma R, Yamaji A. Ophiolite emplacement and the effects of the subduction of the active Chile Ridge System: Heterogeneous paleostress regimes recorded on the Taitao Ophiolite (southern Chile)[J]. Andean Geology, 2009, 36: 3-16.

[34]Yang Minggui, Huang Shuibao, Lou Fasheng, et al. Lithospheric structure and large-scale metallogenic process in Southeast China continental area[J]. Geology in China, 2009, 36(3):528-543.[杨明桂,黄水保,楼法生,等.中国东南陆区岩石圈结构与大规模成矿作用[J].中国地质,2009,36(3):528-543.]

[35]Mao Jingwen, Chen Maohong, Yuan Shunda, et al. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 2011,85(5):636-658.[毛景文,陈懋弘,袁顺达,等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报,2011,85(5):636-658.]

[36]Shu Liangshu. Predevonian tectonic evolution of South China: From cathaysian block to caledonian period folded orogenic belt[J]. Geological Journal of China Universities, 2006, 12(4): 418-431.[舒良树.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报,2006, 12(4):418-431.]

[37]Hu Zhaorong, Deng Guohui. Tectonic characteristics of the Qinzhou-Hangzhou joint belt[J]. Journal of East China Institute of Technology (Natural Science), 2009, 32(2): 114-122.[胡肇荣,邓国辉. 钦—杭接合带之构造特征[J]. 东华理工大学学报:自然科学版,2009, 32(2):114-122.]

[38]Dong Shuwen, Zhang Yueqiao, Long Changxing, et al. Jurassic Tectonic revolution in China and new interpretation of the Yanshan movement[J]. Acta Geologica Sinica, 2007, 81(11): 1 449-1 461.[董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报,2007,81(11):1 449-1 461.]

[39]Zhang Yueqiao, Xu Xianbing, Jia Dong, et al. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 2009,16(1): 234-247.[张岳桥,徐先兵,贾东,等.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的变形记录[J].地学前缘,2009, 16(1):234-247.]

[40]Mao Jingwen, Xie Guiqing, Guo Chunli, et al. Spatial-temporal distribution of Mesozoic Ore deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities,2008, 14(4): 510-526.[毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,2008, 14(4):510-526.]

[1] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[2] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[3] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[4] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[5] 冯建伟, 任启强, 徐珂. 基于地质力学方法的低渗透砂岩储层构造裂缝预测研究[J]. 地球科学进展, 2016, 31(9): 946-967.
[6] 冯佳睿, 高志勇, 崔京钢, 周川闽. 深层、超深层碎屑岩储层勘探现状与研究进展[J]. 地球科学进展, 2016, 31(7): 718-736.
[7] 刘超, 谢庆宾, 王贵文, 崔宇, 张楚珺. 岩浆侵入作用影响碎屑围岩储层的研究进展与展望[J]. 地球科学进展, 2015, 30(6): 654-667.
[8] 李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
[9] 石良, 金振奎, 闫伟, 魏凯, 朱小二. 储层压实作用和胶结作用的压力响应特征[J]. 地球科学进展, 2015, 30(2): 259-267.
[10] 郑庆华, 柳益群. 鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相[J]. 地球科学进展, 2015, 30(1): 78-90.
[11] . 2014 年国家自然科学基金批准项目一览表( 地球科学部分)[J]. 地球科学进展, 2015, 30(1): 91-94.
[12] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.
[13] 孟阳. 基于匹配追踪时-频分解技术的辫状河道油藏储层预测[J]. 地球科学进展, 2014, 29(1): 104-110.
[14] 张金亮,张鹏辉,谢俊,董紫睿,张明,丁芳,袁勇,李景哲. 碎屑岩储集层成岩作用研究进展与展望[J]. 地球科学进展, 2013, 28(9): 957-967.
[15] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
阅读次数
全文


摘要