地球科学进展 ›› 2016, Vol. 31 ›› Issue (7): 718 -736. doi: 10.11867/j.issn.1001-8166.2016.07.0718.

综述与评述 上一篇    下一篇

深层、超深层碎屑岩储层勘探现状与研究进展
冯佳睿, 高志勇, 崔京钢, 周川闽   
  1. 中国石油勘探开发研究院石油地质实验研究中心,北京 100083
  • 收稿日期:2016-05-02 修回日期:2016-06-15 出版日期:2016-07-10
  • 基金资助:
    国家科技重大专项“前陆冲断带及复杂构造区地质演化过程、深层结构与储层特征”(编号:2016ZX05003-001)资助

The Exploration Status and Research Advances of Deep and Ultra-Deep Clastic Reservoirs

Feng Jiarui, Gao Zhiyong, Cui Jinggang, Zhou Chuanmin   

  1. Petroleum Geology Research and Laboratory Center,Research Institute of Petroleum Exploration & Evelopment, Beijing 100083, China
  • Received:2016-05-02 Revised:2016-06-15 Online:2016-07-10 Published:2016-07-10
  • Supported by:
    Projet supported by the National Science and Technology Major Prject of the Minstry of Science and Technology of China “The geological evolution process, deep structure and reservoir characteristics in foreland thrust belt and complex structural area”(No.2016ZX05003-001)
近年来,随着油气资源增长的需求和勘探理论方法的深入,深达5 000~8 000 m深层、超深层碎屑岩储层日益成为油气勘探的新领域。20世纪70年代末以来,我国对深层、超深层碎屑岩储层的研究已经开展了几十年,取得了一系列重大发现。在我国典型盆地大地构造背景和沉积环境影响下,深层、超深层碎屑岩储层经历了长期的埋藏、压实和溶蚀等作用,通常物性较好而形成有效储层。因此,有效储层形成的主控因素成为深层、超深层碎屑岩领域研究关注的焦点。研究发现:① 深部溶蚀作用是深层、超深层碎屑岩有效储层形成的普遍机理,主要通过有机质成熟产生的有机酸和无机酸等对粒间碳酸盐胶结物和长石、岩屑等易溶组分的溶蚀,从而形成次生孔隙。② 地温梯度越低,成岩强度越弱,砂岩孔隙度衰减速率越慢;早期长期浅埋、晚期快速深埋的过程能够有效保存原生孔隙。③ 异常压力能够延缓岩石受到的压实作用,抑制有机酸排出而有利于深层、超深层储层形成次生孔隙。④ 膏盐层会延缓成岩作用进程,形成物性和压力双重封闭,有利于膏盐层下砂岩孔隙的保存。⑤ 黏土膜如绿泥石黏土膜等,对深层、超深层碎屑岩储层高孔隙度的保存具有重要贡献。⑥ 成岩压实作用、早期烃类充注及碎屑颗粒成分等因素也会对有效储层的形成产生影响。对深层、超深层储层油气地质研究,要立足于陆上,加强海洋特别是深水区域油气勘探工作,同时要进一步加强油气地质勘探理论和勘探技术的创新。
In recent years, with increasing demand for oil and gas, and advances in exploration methods, deep and ultra-deep (5 000~8 000 m) clastic reservoirs have become a new domain for oil and gas exploration. Research on deep and ultra-deep clastic reservoirs began in the 1970s and has achieved a series of major findings. Under the typical tectonic setting and sedimentary environment of basins in China, deep and ultra-deep clastic reservoirs, having experienced long-term burial, compaction, and dissolution, generally possess good physical properties and have become effective reservoirs. Therefore, the main controlling factors on the formation of such reservoirs have become the focus of research on deep and ultra-deep clastic rocks. Previous studies in this field have made the following findings. ①Dissolution is a general mechanism for the formation of effective deep and ultra-deep clastic reservoirs. Specifically, the organic and inorganic acids generated by organic matter maturation act to dissolve soluble carbonate cement components such as feldspar and lithic fragments, forming secondary pores. ②The lower the geothermal gradient and weaker the intensity of diagenesis, the slower the decrease in sandstone porosity. Thus, the process of long-term early stage shallow burial and rapid late-stage deep burial is conducive to the preservation of primary porosity. ③Anomalous pressure can delay the compaction of rock, inhibiting the expulsion of organic acids that are favorable for the generation of secondary pores in deep and ultra-deep reservoirs. ④Gypsum layers can slow the process of diagenesis, forming dual sealing by physical properties and pressure. This is conducive to the preservation of porosity in sandstone located below the gypsum layer. ⑤Clay film ( e.g., chlorite film) also plays an important role in preserving the porosity of deep and ultra-deep clastic reservoirs. ⑥The formation of effective reservoirs also can also be influenced by the factors of diagenetic compaction, early hydrocarbon filling and clastic particles composition. Geologic research on deep and ultra-deep reservoirs should focus on reservoirs on land as this will strengthen our understanding of offshore reservoirs, especially in deep waters. Moreover, further innovation in theory and technology of oil and gas exploration are required.

中图分类号: 

[1] Wu Fuqiang, Xian Xuefu. Current state and countermeasure of deep reservoirs exploration[J]. Sedimentary Geology and Tethyan Geology , 2006, 26(2): 68-71.
. 沉积与特提斯地质,2006,26(2):68-71.]
[2] Zou Caineng, Zhao Wenzhi, Jia Chengzao, et al . Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J]. Petroleum Exploration and Development , 2008, 35(3): 257-271.
. 石油勘探与开发,2008,35(3):257-271.]
[3] Wang Cheng, Shao Hongmei, Hong Shuxin, et al . Formation and evolution of laumontite and relationship between oil and gas in the clastic rock of the deep strata of the North Songliao Basin[J]. Bulletin of Mineralogy Petrology and Geochemistry , 2004, 23(3): 213-218.
. 矿物岩石地球化学通报,2004,23(3):213-218.]
[4] Zhang Jinliang, Zhang Penghui, Xie Jun, et al . Diagenesis of clastic reservoirs: Advances and prospects[J]. Advances in Earth Science ,2013,28(9):957-967.
. 地球科学进展,2013,28(9):957-967.]
[5] Chen Xin, Zhong Jianhua, Yuan Jing, et al . Characteristics of clay mineral and its hydrocarbon significance in Paleogene clastic reservoir of Bonan Sag[J]. Acta Petrolei Sinica , 2009, 30(2): 201-207.
. 石油学报,2009,30(2):201-207.]
[6] Xian Benzhong, Wu Caixi, She Yuanqi. Fluid abnormal overpressure and its influence on deep clastic reservoir of the Paleogene in Chezhen Sag of Dongying,Shandong Province[J]. Journal of Palaeogeography , 2011, 13(3): 309-316.
. 古地理学报,2011,13(3):309-316.]
[7] Zhang Yunfeng,Wang Guoqiang,Fu Baoli, et al . The diagenesis and the origin of abnormal high porosity zone in the deep clastic Reservoir in Changling Fault Depression[J]. Journal of Jilin Unviersity ( Earth Science Edition ), 2011, 41(2): 372-376.
. 吉林大学学报:地球科学版,2011,41(2):372-376.]
[8] Zhong Dakang, Zhu Xiaomin, Wang Hongjun.Analysis on the characteristics and formation mechanism of high quality clastic reservoirs in China[J]. Science in China ( Series D ), 2008, 38(Suppl.1): 11-18.
. 中国科学:D辑,2008,38(增刊1):11-18.]
[9] Jia Xiaole, He Dengfa, Tong Xiaoguang, et al . Distribution of the global oil and gas fields[J]. China Petroleum Exploration , 2011, 16(3): 1-7.
. 中国石油勘探,2011,16(3):1-7.]
[10] Pang Xiongqi. Key challenges and research methods of petroleum exploration in the deep of superimposed basins in western China[J]. Oil & Gas Geology , 2010, 31(5): 517-541.
. 石油与天然气地质,2010,31(5):517-541.]
[11] Zhang Linye, Li Juyuan, Li Zheng, et al . Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science , 2014, 29(6): 700-711.
.地球科学进展,2014,29(6):700-711.]
[12] Tuo Jincai. Research status and advances in deep oil and gas exploration[J]. Advances in Earth Sciences , 2002, 17(4): 565-570.
. 地球科学进展,2002,17(4):565-570.]
[13] Zhai Guangming, Wang Shihong, He Wenyuan. Hotspot trend and enlightenment of global ten-year hydrocarbon exploration[J]. Acta Petrolei Sinica , 2012, 33(Suppl.I): 14-19.
. 石油学报,2012,33(增刊I):14-19.]
[14] Aase N E, Walderhaug O. The effect of hydrocarbons on quartz cementation: Diagenesis in the Upper Jurassic sandstones of the Miller field,North Sea, revisited[J]. Petroleum Geoscience , 2005,11(3): 215-223.
[15] Ajdukiewicz J M, Nicholson P H, Esch W L. Prediction of deep reservoir quality from early diagenetic process models in the Jurassic eolian Norphlet Formation,Gulf of Mexico[J]. AAPG Bulletin , 2010, 94(8): 1 189-1 227.
[16] Ehrenberg S N, Nadeau P H, Steen ø. A megascale view of reservoir quality in producing sandstones from the offshore Gulf of Mexico[J]. AAPG Bulletin , 2008, 92(2):145-164.
[17] Cao B F, Bai G P, Wang Y F. More attention recommended for global deep reservoirs[J]. Oil & Gas Journal , 2013, 111(9):78-85.
[18] Wang Zecheng, Zhao Wenzhi, Hu Suyun, et al . Reservoir types and distribution characteristics of large marine carbonate oil and gas fields in China[J]. Oil & Gas Geology , 2013, 34(2): 153-160.
. 石油与天然气地质,2013,34(2):153-160.]
[19] Han Jie, Wu Xiao, Jiang Jie, et al . Classification and continuity analysis on carbonate reservoir of the Yingshan Formation in the western Tazhong I gasfield[J]. Petroleum Geology and Recovery Efficiency , 2016, 23(1): 14-21.
. 油气地质与采收率,2016,23(1): 14-21.]
[20] Wang Zhaoming. Formation mechanism and enrichment regularities of Kelasu Subsalt Deep Large Gas Field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience , 2014, 25(2): 153-166.
. 天然气地球科学,2014,25(2):153-166.]
[21] Ma Yongsheng, Cai Xunyu, Li Guoxiong. Basic characteristics and concentration of the Puguang Gas Field in the Sichuan Basin[J]. Acta Geologica Sinica , 2005, 79(6): 858-865.
. 地质学报,2005,79(6):858-865.]
[22] Wei Hongxing, Huang Wuhuan, Luo Haining, et al . Faults characteristics and evolution in the eastern Kuqa depression[J]. Earth Science — Journal of China University of Geosciences ,2016, 41(6): 1 074-1 080.
. 地球科学——中国地质大学学报,2016,41(6):1 074-1 080.]
[23] Zhao Wenzhi, Wang Zecheng, Zhang Shuichang, et al .Hydrocarbon accumulation conditions and enrichment zones of deep marine strata in the superimposed basins of China[J]. Chinese Science Bulletin , 2007, 52(Suppl.I): 9-18.
. 科学通报,2007,52(增刊I):9-18.]
[24] Zhu Rukai, Guo Hongli, Gao Zhiyong, et al . Distribution characteristics and main controlling factors of marine reservoir in China[J]. Chinese Science Bulletin , 2007, 52(Suppl.I): 40-45.
. 科学通报,2007,52(增刊I):40-45.]
[25] Zhu Rukai, Zou Caineng, Bai Bin, et al . Progresses in the global petroleum exploration and its demand in reservoir research[J]. Advances in Earth Science , 2011, 26 (11) : 1 150-1 161.
.地球科学进展,2011,26(11):1 150-1 161.]
[26] Sun Longde, Fang Chaoliang, Li Feng, et al . Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology[J]. Petroleum Exploration and Development , 2010, 37(4): 385-396.
. 石油勘探与开发,2010,37(4):385-396.]
[27] Xiao Jianxin, Lin Changsong, Liu Jingyan. Depositional palaeogeography of cretaceous of Kuqa Depression in Northern Tarim Basin[J]. Geoscience , 2005, 19(2): 253-260.
. 现代地质,2005, 19(2):253-260.]
[28] Ehrenberg S N, Nadeau P H. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin , 2005, 89(4):435-445.
[29] Wu Y H, Lu S F, Chen F W, et al . Geological modeling on the reservoir of oil sand in estuary[J]. Acta Geologica Sinica , 2015, 89(Suppl.1):106-108.
[30] Haddad S C, Worden R H, Prior D J, et al . Quartz cement in the Fontainebleau sandstone,Paris Basin, France: Crystallography and implication for mechanisms of cement growth[J]. Journal of Sedimentary Research , 2006, 76: 244-256.
[31] Gu Jiayu, Fang Hui, Jia Jinhua. Diagenesis and reservoir characteristics of cretaceous braided delta sandbody in Kuqa Depression,Tarim Basin[J]. Acta Sedimentologica Sinica , 2001, 19(4): 518-523.
. 沉积学报,2001,19(4):518-523.]
[32] Kuang Jun, Yao Genshun, Zhu Guohua, et al . The origin of favorable sandstone reservoirs of Sangonghe Formation, Lower Jurassic in Central Junggar Basin[J]. Petroleum Exploration and Development , 2001, 28(6): 1-35.
. 石油勘探与开发,2001, 28(6):1-35.]
[33] Wang Shuxiang, Yu Xuemin, He Yongmei, et al . Characteristics and formation deep clastic reservoir in Binhai Area of Qikou Sag[J]. Natural Gas Geoscience , 2010, 21(4): 566-571.
. 天然气地球科学,2010,21(4):566-571.]
[34] Shen Weibing, Pang Xiongqi, Zhang Baoshou, et al . Physical properties differences and key controlling factors of the clasolite reservoirs and carbonate reservoirs in Tazhong area[J]. Geological Journal of China Universities , 2015, 21(1): 138-146.
. 高校地质学报,2015,21(1):138-146.]
[35] Cao Yingchang, Yuan Guanghui, Li Xiaoyan, et al . Types and characteristics of anomalously high porosity zones in Paleogene mid-deep buried reservoirs in the northern slope, Dongying Sag[J]. Acta Petrolei Sinica , 2013, 34(4): 683-691.
. 石油学报,2013,34(4):683-691.]
[36] Taylor T R, Giles M R, Hathon L A, et al . Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin , 2010, 94(8): 1 093-1 132.
[37] Bjrlykke K, Jahren J. Open and closed geochemical stystems during diagenesis in sedimentary basins: Constrains on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoir[J]. AAPG Bulletin , 2013, 96(12): 2 193-2 214.
[38] Zhong Dakang, Zhu Xiaomin, Wen Yingchu. Diagenesis, porosity evolution and secondary porosity prediction of Jurassic sandstone reservoir in Fudong slope, Jungar Basin[J]. China Offshore Oil and Gas ( Geology ), 2003, 17(4): 249-251.
.中国海上油气(地质),2003,17(4):249-251.]
[39] Zhu Xiaomin, Dong Yanlei, Guo Changmin, et al . Sequence framework and reservoir quality of Sha 1 Member in Shahejie Formation, Qikou Sag[J]. Acta Sedimentologica Sinica , 2007, 25(6): 934-941.
. 沉积学报,2007,25(6):934-941.]
[40] Zhong Dakang, Zhu Xiaomin, Zhang Zhihuan, et al . Controlling factors of sandstone reservoir of the Paleogene in Dongying Sag[J]. Petroleum Exploration and Development ,2003, 30(3): 95-98.
.石油勘探与开发,2003,30(3):95-98.]
[41] Li Huijun, Wu Tairan, Wu Bo, et al . Distribution and controlling factors of high quality clastic deeply buried reservoirs in China[J]. Geological Science and Technology Information , 2004, 23(4): 76-82.
. 地质科技情报,2004,23(4):76-82.]
[42] Huang Jie, Zhu Rukai, Hou Dujie, et al . The new advances of secondary porosity genesis mechanism in deep clastic reservoir[J]. Geological Science and Technology Information , 2007, 26(6): 76-82.
. 地质科技情报,2007,26(6):76-82.]
[43] Zhu Rukai, Guo Hongli, Gao Zhiyong, et al . Mesozoic-Cenozoic Sequence Stratigraphy, Sedimentary System and Reservoir Characteristics of the Northern Tarim Basin[M]. Beijing: Geological Press, 2009.
. 北京:地质出版社,2009.]
[44] Ji Hancheng, Xu Zhen. Experimental simulation for dissolution in clastic reservoirs of the deep zone[J]. Acta Geologica Sinica , 2007, 81(2): 212-219.
. 地质学报,2007,81(2):212-219.]
[45] Lai Jin, Wang Guiwen, Wang Shu’nan, et al . Research status and advances in the diagenetic facies of clastic reservoirs[J]. Advances in Earth Science , 2013, 28(1): 39-50.
. 地球科学进展,2013,28(1): 39-50.]
[46] Chen Chunfang, Zhao Chenglin, Li Huijun. Physical properties of reservoir and influencing factors of deep burial clastic rocks in Banqiao-Qibei Sag[J]. Journal of the University of Petroleum , China ( Edition of Natural Science ), 2002, 26(1): 4-7.
. 石油大学学报:自然科学版,2002,26(1):4-7.]
[47] Higgs K E, Zwingmann H, Reyes A G, et al . Diagenesis, porosity Evolution,and petroleum emplacement in tight gas reservoirs, Taranaki Basin,New Zealand[J]. Journal of Sedimentary Research , 2007, 77(12): 1 003-1 025.
[48] Yu Chuanqi, Song Xiaojiao, Li Jingjing, et al . Impact of feldspar dissolution on reservoir physical properties: A case from Dongying Sag, the Bohai Bay Basin[J]. Oil & Gas Geology , 2013, 34(6): 765-770.
. 石油与天然气地质,2013,34(6):765-770.]
[49] Hu Ruilin, Yue Zhongqi, Wang Lichao, et al . Application of plagioclase solution degree to evaluating the weathering degree of CDG of Granites[J]. Geological Review , 2005, 51(6): 649-655.
. 地质论评,2005,51(6):649-655.]
[50] Yuan Guanghui, Cao Yingchang, Xi Kelai, et al . Feldspar dissolution and its impact on physical properties of Paleogene clastic reservoirs in the northern slope zone of the Dongying sag[J]. Acta Petrolei Sinica , 2013, 34(5): 853-866.
. 石油学报,2013,34(5):853-866.]
[51] Li Wenguo, Zhang Xiaopeng, Zhong Yumei. Formation mechanism of secondary dissolved pores in arcose[J]. Oil & Gas Geology , 2005, 26(2):220-229.
. 石油与天然气地质,2005,26(2):220-229.]
[52] Zhong Dakang, Zhu Xiaomin, Zhou Xinyuan. Phases of secondary pore generation and dissolution mechanism: Taking Silurian asphaltic sandstone in central Tarim Basin as an example[J]. Natural Gas Industry , 2006, 26(9):21-24.
.天然气工业,2006,26(9):21-24.]
[53] Zheng Qinghua, Liu Yiqun. The diagenesis and diagenetic lithofacies of tight reservoir of Chang 4+5 member of Yan-chang Formation in Huaqing area, Ordos Basin[J]. Advances in Earth Science ,2015,30(1):78-90.
. 地球科学进展,2015,30(1):78-90.]
[54] Huang Keke, Huang Sijing, Tong Hongpeng, et al . Thermodynamic calculation of feldspar dissolution and its significance on research of clasfic reservoir[J]. Geological Bulletin of China ,2009, 28(4): 474-482.
.地质通报,2009,28(4):474-482.]
[55] Chang Xinghao, Zhang Zhihuan, Li Yanxia, et al . Distribution characteristics of pores in medium-deep clastic reservoir rocks of Sanma area, Huanghua Depression and its controlling factors[J]. Acta Geoscientica Sinica , 2005, 26(1): 75-82.
. 地球学报,2005,26(1):75-82.]
[56] Ying Fengxiang, Luo Ping, He Dongbo, et al . Diagenesis and Diagenetic Numerical Modeling of Clastic Reservoirs in China’s Oil and Gas Basin[M]. Beijing: Petroleum Industry Press, 2004.
.北京:石油工业出版社,2004.]
[57] Zhang Shanwen, Zhang Linye, Zhang Shouchun, et al . Formation of abnormal high pressure and its application in the study of oil bearing property of lithologic hydrocarbon reservoirs in the Dongying sag[J]. Chinese Science Bulletin ,2009, 54(11): 1 570-1 578.
.科学通报,2009,54(11):1 570-1 578.]
[58] Chen Xin, Zhong Jianhua,Yuan Jing, et al . Development and formation of Paleogene kaolinite, Bonan subsag[J]. Petroleum Exploration and Development ,2009, 36(4):456-462.
. 石油勘探与开发,2009,36(4):456-462.]
[59] Xue Zong’an, Zhao Yuhong, Wu Yiping, et al . Characteristics and forming mechanisms of reservoirs in the Shahejie Formation of Qibei slope, Bohai Bay Basin[J]. Oil & Gas Geology ,2015, 36(2):280-287.
. 石油与天然气地质, 2015, 36(2):280-287.]
[60] Chen Yong, Wang Chengjun, Sun Xiangfei, et al . Progress on mineral solubility and mechanism of dissolution secondary porosity forming in clastic reservoir[J]. Bulletin of Mineralogy , Petrology and Geochemistry ,2015, 34(4): 830-836.
.矿物岩石地球化学通报,2015,34(4):830-836. ]
[61] Lan Yefang, Deng Xiuqin, Cheng Dangxing, et al . Formation mechanisms of secondary porosity in the Triassic Yanchang Formation,Ordos Basin[J]. Geological Science and Technology Information ,2014, 33(6): 128-136.
. 地质科技情报,2014,33(6):128-136.]
[62] Yuan Guanghui, Cao Yingchang, Yang Tian, et al . Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic progress of clastic reservoir[J]. Earth Scicene Frontiers ,2013, 20(5): 207-219.
.地学前缘,2013,20(5):207-219.]
[63] Zhu Rukai, Guo Hongli, Gao Zhiyong, et al . Relationship of diagenetic fluid evolution, reservoir physical properties and migration of oil and gas—A case of marine clastic reservoirs from upper ordovician to carboniferous in West Manjiaer Sag, Tarim Basin[J]. Acta Geologica Sinica , 2008, 82(6): 835-843.
. 地质学报,2008, 82(6):835-843.]
[64] Zhong Dakang, Zhu Xiaomin, Zhang Zhihuan, et al . Origin of secondary porosity of Paleogene sandstone in the Dongying Sag[J]. Petroleum Exploration and Development , 2003, 30(6): 51-53.
. 石油勘探与开发,2003,30(6):51-53.]
[65] Jiang Lingzhi, Niu Jiayu, Zhang Qingchang, et al . Major factors analysis on controlling the formation of favorable reservoir in deep level of Bohai Bay Basin[J]. Geological Review , 2009, 55(1): 73-78.
. 地质论评, 2009,55(1):73-78.]
[66] Chen Honghan, Wu You, Xiao Qiugou. Thermal regime and paleogeothermal gradient evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China[J]. Earth Science — Journal of China University of Geosciences , 2013, 38(3): 541-552.
. 地球科学:中国地质大学学报,2013,38(3):541-552.]
[67] Li Kun, Yu Bingsong, Wang Lidong, et al . Diagenesis and pore evolution of Jurassic Low-porosity and Low-permeability sandstone reservoir in Southeastern Tarim Basin[J]. Geoscience , 2014, 28(2): 388-395.
. 现代地质,2014,28(2):388-395.]
[68] Van de Kamp P C. Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales[J]. Clays and Clay Minerals , 2008, 56: 66-81.
[69] Chen G H, Lu S F, Li J B, et al . The oil-bearing pore size distribution of Lacustrine Shale from E 2 S 42 Sub-Member in Damintun Sag, Liaohe Depression, Bohai Bay Basin, China[J]. Acta Geologica Sinica , 2015, 89(Z1): 8-10.
[70] Gao Zhiyong, Hu Yongjun, Zhang Lihua, et al . The interpretation of the controlling action of Cretaceous to Tertiary tectonic compression on the reservoir in the southern margin of Junggar Basin: Vitrinite reflectance and grain packing density[J]. Chinese Geology , 2010, 37(5): 1 336-1 352.
. 中国地质,2010,37(5):1 336-1 352.]
[71] Yu Zhichao, Liu Keyu, Zhao Mengju, et al . Characterization of Diagenesis and the Petroleum Charge in Kela 2 Gas Field, Kuqa Depression, Tarim Basin[J]. Earth Science — Journal of China University of Geosciences , 2016, 41(3): 533-545.
. 地球科学——中国地质大学学报,2016,41(3):533-545.]
[72] Zhang Huiliang, Zhang Ronghu, Yang Haijun, et al . Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development , 2014, 41(2): 158-167.
. 石油勘探与开发,2014,41(2):158-167.]
[73] Zhang Ronghu, Zhang Huiliang, Shou Jianfeng, et al . Geological analysis on reservoir mechanism of the Lower Cretaceous Bashijiqike Formation in Dabei area of the Kuqa Depression[J]. Chinese Journal of Geology , 2008, 43(3): 507-517.
. 地质科学,2008,43(3):507-517.]
[74] Jin Wenzheng, Tang Liangjie, Wang Qinghua, et al . Structural segmentation of the Eastern Qiulitage structural belt in Kuqa foreland basin, Xinjing[J]. Geotectonica et Metallogenia , 2007, 31(3): 300-307.
. 大地构造与成矿学,2007,31(3):300-307.]
[75] Wu Guanghui, Luo Chunshu, Hu Taiping, et al . Fold-related faulting: An example from the Cenozoic salt-overlying beds in the Kuqa depression[J]. Chinese Journal of Geology , 2007, 42(3): 496-505.
. 地质科学,2007,42(3):496-505.]
[76] Lin Tong, Li Wenhou, Sun Ping, et al . Factors influencing deep favorable reservoirs on the southern margin of Junggar Basin, Xinjiang Province[J]. Geologcal Bulletin of China , 2013, 32(9): 1 461-1 470.
. 地质通报,2013,32(9):1 461-1 470.]
[77] Cao Hua, Gong Jingjing, Wang Guifeng. The cause of overpressure and its relationship with reservoir forming[J]. Natural Gas Geoscience , 2006, 17(3): 422-425.
. 天然气地球科学,2006,17(3):422-425.]
[78] Carr A D. Suppression and retardation of vitrinite reflectance, Part 1. Form ation and significance for hydrocarbon generation[J]. Journal of Petroleum Geology , 2000, 23(3): 313-343.
[79] Carr A D. Suppression and retardation of vitrinite reflectance, Part 2.Derivation and testing of a kinetic model for suppression[J]. Journal of Petroleum Geology , 2000, 23: 475-496.
[80] Ole Valdemar Vejbak. Disequilibrium compaction as the cause for Cretaceous-Paleogene overpressures in the Danish North Sea[J]. AAPG Bulletin , 2008, 92(2):165-180.
[81] Sibson R H. Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes[J]. AAPG Bulletin , 2003, 87(6):901-908.
[82] Hao F, Zou H Y, Gong Z S, et al . Hierarchies of overpressure retardation of organic matte maturation: Case studies from petroleum basins in China[J]. AAPG Bulletin , 2007, 91(10):1 467-1 498.
[83] Shi Liang, Jin Zhenkui, Yan Wei, et al . Characteristics of pressure response in detrital resveroir compaction and cementation[J]. Advances in Earth Science , 2015, 30(2):259-267.
.地球科学进展,2015,30(2):259-267.]
[84] Chen Zhonghong, Zha Ming, Qu Jiangxiu. Conditions and mechanism of hydrocarbon accumulation in overpressured systems in sedimentary basins[J]. Natural Gas Geoscience , 2003, 14(2): 97-102.
. 天然气地球科学,2003,14(2):97-102.]
[85] Zhang Xing, Yang Shenglai, Wang Gang, et al . Study on physical properties and phase characteristics of natural gas in Changshen gas reservoirs[J]. Journal of Xian Shiyou University ( Natural Science Edition ), 2011, 26(1):45-47.
. 西安石油大学学报:自然科学版,2011,26(1):45-47.]
[86] Wilkinson M, Haszeldine R S, Fallick A E. Hydrocarbon filling and leakage history of a deep geopressured sandstone, Fulmar Formation, United Kingdom North Sea[J]. AAPG Bulletin , 2006, 90(12):1 945-1 961.
[87] Bilotti F, Shaw J H. Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles[J]. AAPG Bulletin , 2005,89(11):1 475-1 491.
[88] Hao Xuefeng. Overpressure genesis and evolution of sandstone reservoirs in the 3rd and 4th members of Shahejie Formation,the Dongying Depression[J]. Oil & Gas Geology , 2013, 34(2): 167-173.
. 石油与天然气地质,2013,34(2):167-173.]
[89] Niu Jiayu, Wang Yuman, Qiao Hansheng. Analysis of potential for oil & gas exploration of deep formations in old oil areas in East China[J]. China Petroleum Exploration , 2004,9(1): 33-40.
. 中国石油勘探,2004,9(1):33-40.]
[90] Peng Bo, Hao Fang, Zou Huayao. Development and evolution of overpressure and episodic hydrocarbon accumulation in Northern Liaozhong Subdepression of Liaodong Bay area[J]. Geological Review , 2013, 59(6): 1 257-1 267.
. 地质论评,2013,59(6):1 257-1 267.]
[91] Shen Jianian, Cong Yongshan, Mao Liquan, et al . Mechanism of Putaohua oil layer’s overpressure in the Gulong Sag, Songliao Basin[J]. Chinese Journal of Geology , 2009, 44(2): 502-512.
. 地质科学,2009,44(2):502-512.]
[92] Zhang Jianyong, Liu Wenhui, Tenger, et al . Influences of TSR on gaseous hydrocarbon components and carbon isotopes: Revelations from high-temperature and high-pressure simulation experiments[J]. Petroleum Geology & Experiment , 2012, 34(1): 66-70.
. 石油实验地质,2012,34(1):66-70.]
[93] Xiao Jun, Wang Hua, Zhu Guanghui, et al . Abnormal pressure and deep reservoir physical properties in Qiongdongnan Basin[J]. Journal of Oil and Gas Technology , 2007,29(1): 7-10.
. 石油天然气学报:江汉石油学院学报,2007,29(1):7-10.]
[94] Galushkin Y I, Yakovlev G E. Influence of saline deposits on the conditions of petroleum generation in the rocks underlying the salt complex of the northern part of the Precaspian Basin[J]. Geochemistry International , 2007, 45(7): 625-637.
[95] Zhu Tong, Wang Xingzhi, Shen Zhongmin, et al . The origin of gypsum-salt rock of Leikoupo Formation and its influence on the gas reservoir in central Sichuan Basin[J]. Chinese Geology , 2014, 41(1): 122-134.
. 中国地质,2014,41(1):122-134.]
[96] Lin Liangbiao, Hao Qiang, Yu Yu, et al . Development characteristics and sealing effectiveness of Lower Cambrian gypsum rock in Sichuan Basin[J]. Acta Petrologica Sinica , 2014, 30(3): 718-726.
. 岩石学报,2014,30(3):718-726.]
[97] Zhuo Qingong, Li Yong, Song Yan, et al . Evolution of Paleogene saline deposits and effectiveness of traps in Kelasu tectonic zone, Kuqa Depression, Tarim Basin[J]. Petroleum Geology & Experiment , 2013, 35(1): 42-47.
. 石油实验地质,2013,35(1):42-47.]
[98] Wang Dongxu, Zeng Jianhui, Gong Xiumei. Impact of gypsolith on the formation of oil & gas reservoir[J]. Natural Gas Geoscience , 2005, 16(3): 329-333.
. 天然气地球科学,2005,16(3):329-333.]
[99] Fu Xiaofei, Xu Meng, Liu Shaobo, et al . Interior structure of fractures in the tight sandstone-gypsum mudstone (reservoir cap rock combinations) in the Kuqa depression, Tarim Basin, and its significance in gas reservoir accumulation[J]. Acta Geologica Sinica , 2016, 90(3): 521-533.
. 地质学报,2016,90(3):521-533.]
[100] Tang Liangjie, Jia Chengzao, Jin Zhijun, et al . Salt-related structural characteristics and hydrocarbon accumulation in the middle segment of the Kuqa foreland fold belt in the Northern Tarim basin, NW China[J]. Geological Review , 2003, 49(5): 501-506.
. 地质论评,2003,49(5):501-506.]
[101] Zhuo Qingong, Zhao Mengjun, Li Yong, et al . Dynamic sealing evolution and hydrocarbon accumulationof evaporite cap rocks: An example from Kuqa foreland basin thrust belt[J]. Acta Petrolei Sinica , 2014, 35(5): 847-856.
. 石油学报,2014,35(5):847-856.]
[102] Zhou Xingxi. The features of Tertiary halite-gypsum caprocks and their control on formation of oil and gas pools in Kuqa depression[J]. Journal of Palaeogeography , 2000, 2(4): 51-57.
. 古地理学报, 2000,2(4):51-57.]
[103] Lü Xiuxiang, Jin Zhijun, Zhou Xinyuan, et al . The oil and gas accumulation associated with gypsum rock in Kuqa depression,Tarim basin[J]. Petroleum Exploration and Development , 2000, 27(4): 20-21.
. 石油勘探与开发,2000,27(4):20-21.]
[104] Bloch S, Lander R H, Bonnell I. Anom alously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin , 2002, 86(2): 301-328.
[105] Billault V, Beautort D, Baronnet A, et al . A nanopetrographic and textural study of grain-coating chlorites in sandstone reservoirs[J]. Clay Minerals , 2003, 38: 315-328.
[106] Zhang Huiliang,Zhang Ronghu,Wang Yuehua, et al . Influence of clay minerals membrane on sandstone reservoirs—A case study on the Lower Donghetang reservoirs of the Devonian of well Qun 6 in the Tarim Basin[J]. Petroleum Geology & Experiment , 2006, 28(5): 493-498.
. 石油实验地质,2006,28(5):493-498.]
[107] Fu Meiyan, Zhang Shaonan, Ding Xiaoqi, et al . Characteristics and petroleum geologic significances of clay rims in sandstones of Mingshui Formation, well Songke1, Songiiao Basin[J]. Petroleum Geology & Experiment , 2012, 34(6): 587-593.
. 石油实验地质,2012,34(6):587-593.]
[108] Bai Bin, Zou Caineng, Zhu Rukai, et al . Characteristics and formation stage-times of structural fractures in tight sandstone reservoir of the 2nd member of Xujiahe formation in Southwestern Sichuan basin[J]. Acta Geologica Sinica , 2012, 86(11): 1 841-1 846.
. 地质学报,2012,86(11):1 841-1 846.]
[109] Huang Sijing, Xie Lianwen, Zhang Meng, et al . Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology ( Science & Technology Edition ), 2004, 31(3): 273-282.
. 成都理工大学学报:自然科学版,2004,31(3):273-282.]
[110] Huang Sijing, Zhang Meng, Zhu Shiquan, et al . Control of origin of pores over relationship of porosity to permeability in sandstone reservoir: A case study from Yanchang sandstone of Triassic of eastern Gansu, Ordos Basin[J]. Journal of Chengdu University of Technology ( Science & Technology Edition ), 2004, 31(6): 648-652.
. 成都理工大学学报:自然科学版,2004,31(6):648-652.]
[111] Lander R H, Bonnell L M. A model for fibrous illite nucleation and growth in sandstones[J]. AAPG Bulletin , 2010, 94: 1 161-1 187.
[112] Lander R H, Bonnell L M, Larese R E. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates[J]. AAPG Bulletin , 2008, 92: 1 537-1 563.
[113] Molenaar N, Cyziene J, Sliaupa S, et al . Lack of inhibiting effect of oil emplacement on quartz cementation: Evidence from Cambrian reservoir sandstones,Paleozoic Baltic Basin[J]. Geological Society of America ,2008, 120: 1 280-1 295.
[114] Lin Chunming, Zhang Xia, Zhou Jian, et al . Diagenesis characteristics of the reservoir sandstones in Lower Shihezi formation from Daniudi gas field, Ordos Basin[J]. Advances in Earth Science , 2011, 26(2): 212-223.
. 地球科学进展,2011,26(2):212-223.]
[115] Hu Zuowei ,Li Yun, Huang Sijing, et al . Reviews of the destruction and preservation of primary porosity in the and stone reservoirs[J]. Advances in Earth Science , 2012, 27(1):14-25.
. 地球科学进展,2012,27(1):14-25.]
[116] Tian Jianfeng, Chen Zhenlin, Yang Youyun. Protection mechanism of authigenic chlorite on sandstone reservoir pores[J]. Geological Science and Technology Information ,2008, 27(4): 49-54.
. 地质科技情报,2008,27(4):49-54.]
[117] Yang Wei, Wei Guoqi, Zhao Xingyuan, et al . Can authigenic pore-lining chlorite restrain quartz overgrowth in clastic reservoir? A case study of sandstone reservoir in Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica , 2013, 34(Suppl.1): 128-135.
. 石油学报,2013,34(增刊1):128-135.]
[118] Lan Yefang, Huang Sijing, Lü Jie. Influences of authigenic chlorite on pore structure in sandstone reservoir:A case study from Upper Triassic Yanchang Formation in Ordos Basin, China[J]. Geologcal Bulletin of China ,2011, 30(1): 134-140.
. 地质通报,2011,30(1):134-140.]
[119] Liu Jinku, Peng Jun, Liu Jianjun, et al . Pore-preserving mechanism of chlorite rims in tight sandstone—An example from the T3x Formation of Baojie area in the transitional zone from the central to southern Sichuan Basin[J]. Oil & Gas Geology , 2009, 30(1): 53-58.
. 石油与天然气地质,2009,30(1):53-58.]
[120] Yao Jingli, Wang Qi, Zhang Rui, et al . Forming mechanism and their environmental implications of Chlorite-coatings in Chang 6 sandstone (Upper Triassic) of Hua-Qing area,Ordos Basin[J]. Acta Sedimentologica Sinica , 2011, 29(1): 72-79.
. 沉积学报,2011,29(1):72-79.]
[121] Zhu Ping, Huang Sijing, Li Demin, et al . Effect and protection of chlorite on clastic reservoir rocks[J]. Journal of Chengdu University of Technology ( Science & Technology Edition ), 2004, 31(2): 153-156.
. 成都理工大学学报:自然科学版,2004,31(2):153-156.]
[122] Sun Quanli, Sun Hansen, Jia Bao, et al . Genesis of chlorites and its relationship with high-quality reservoirs in the Xujiahe Formation tight sandstones,western Sichuan depression[J]. Oil & Gas Geology , 2012, 33(5): 751-757.
. 石油与天然气地质,2012,33(5):751-757.]
[123] Shou Jianfeng, Zhang Huiliang, Shen Yang, et al . Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J]. Acta Petrologica Sinica ,2006, 22(8):2 165-2 170.
. 岩石学报,2006,22(8):2 165-2 170.]
[124] Zhao Wenzhi, Zhang Guangya, Wang Hongjun. New achievements of petroleum geology theory and its significances on expanding oil and gas exploration field[J]. Acta Petrolei Sinica ,2005, 26(1): 1-12.
.石油学报,2005,26(1):1-12. ]
[125] Xiao Hui, Zhao Jingzhou, Yang Haijun, et al . Evidence of fluid inclusions for the hydrocarbon charging history of Ordovician reservoirs in Yingmaili low-uplift, northern Tarim Basin[J]. Acta Petrolei Sinica ,2012, 33(3): 372-378.
.石油学报,2012,33(3):372-378.]
[126] Pu Xiugang, Zhou Lihong,Wang Wenge, et al . Medium-deep clastic reservoirs in the slope area of Qikou sag, Huanghua depression, Bohai Bay Basin[J]. Petroleum Exploration and Development ,2013, 40(1): 36-48.
. 石油勘探与开发,2013,40(1):36-48.]
[127] Cao Qing, Zhao Jingzhou, Zhao Xiaohui, et al . Characteristics and significance of fluid inclusions from Majiagou Formation,Yichuan-Huangling area,Ordos Basin[J]. Advance in Earth Sciences ,2013, 28(7): 819-828.
.地球科学进展,2013,28(7): 819-828.]
[128] Pang Xiongqi, Luo Xiaorong, Jiang Zhenxue, et al . Advancements and problems on hydrocarbon accumulation research of complicated superimposed basins in Western China[J]. Advance in Earth Sciences ,2007, 22(9): 879-887.
. 地球科学进展,2007,22(9):879-887.]
[129] Wang Yongshi, Wang Yong, Zhu Deshun, et al . Genetic mechanism of high-quality glutenite reservoirs at the steep slope in northern Dongying Sag[J]. China Petroleum Exploration ,2016, 21(2): 28-36.
. 中国石油勘探,2016,21(2):28-36.]
[130] Zhang Zhijie, Yang Fan, Shi Yanli, et al . New Perspectives on Deep-water Sandstones-origin, Recognition, Initiation, and Reservoir Quality[M]. Beijing:Petroleum Industry Press, 2013.
.北京:石油工业出版社,2013.]
[131] Zhao Wenzhi, Zhu Guangyou, Su Jin, et al . Study on the multi-stage charging and accumulation model of Chinese marine petroleum: Example from eastern Lungu area in the Tarim Basin[J]. Acta Petrologica Sinica , 2012, 28(3): 709-721.
.岩石学报,2012,28(3):709-721.]
[132] Sun Longde, Zou Caineng, Zhu Rukai, et al . Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development , 2013, 40(6): 641-649.
.石油勘探与开发,2013,40(6):641-649.]
[133] Li Wei. A new record of China’s oil drilling-G deep 7 well[J]. Oil Drilling
[1] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[2] 陈科贵, 李进, 黄长兵, 陈愿愿, 王刚, 刘阳. BP神经网络在富钾卤水中的应用研究[J]. 地球科学进展, 2018, 33(6): 614-622.
[3] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展 *[J]. 地球科学进展, 2018, 33(11): 1112-1129.
[4] 史文奇, 赵进平. 北欧海溢流的水文特征和变化机理综述[J]. 地球科学进展, 2017, 32(3): 245-261.
[5] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[6] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[7] 刘超, 谢庆宾, 王贵文, 崔宇, 张楚珺. 岩浆侵入作用影响碎屑围岩储层的研究进展与展望[J]. 地球科学进展, 2015, 30(6): 654-667.
[8] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[9] 邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42-55.
[10] 张金亮,张鹏辉,谢俊,董紫睿,张明,丁芳,袁勇,李景哲. 碎屑岩储集层成岩作用研究进展与展望[J]. 地球科学进展, 2013, 28(9): 957-967.
[11] 周游,倪师军,施泽明. 四川盆地东北部某储卤构造深层卤水资源量容积法评价的改进模型研究[J]. 地球科学进展, 2013, 28(6): 703-708.
[12] 毛绪美,梁杏,王凤林,韩庆之. 多源 4He及其积累年龄揭示的深层地下水更新能力[J]. 地球科学进展, 2011, 26(4): 417-425.
[13] 董林森,刘立,曲希玉,刘娜,郭欣欣. CO 2矿物捕获能力的研究进展[J]. 地球科学进展, 2010, 25(9): 941-949.
[14] 王秀艳,王金哲,臧逸中,韩双平,陈江,李向全. 衡水地区地裂缝空间发育特征与地下水位降深关系[J]. 地球科学进展, 2006, 21(4): 417-423.
[15] 郑军卫;刘文汇;史斗. 塔里木盆地深层气勘探潜势[J]. 地球科学进展, 2004, 19(5): 802-807.
阅读次数
全文


摘要