地球科学进展 ›› 2010, Vol. 25 ›› Issue (7): 698 -705. doi: 10.11867/j.issn.1001-8166.2010.07.0698

综述与评述 上一篇    下一篇

基于地表温度与植被指数特征空间反演地表参数的研究进展
田苗 1,王鹏新 1*,孙威 2   
  1. 1. 中国农业大学信息与电气工程学院,北京 100083;2.国家测绘局测绘发展研究中心,北京 100830
  • 收稿日期:2009-12-18 修回日期:2010-04-09 出版日期:2010-07-10
  • 通讯作者: 王鹏新(1965-),男,陕西礼泉人,教授,主要从事定量遥感及其在农业中的应用研究. E-mail:wangpx@cau.edu.cn
  • 基金资助:

    国家自然科学基金面上项目“基于条件植被温度指数的干旱预测研究”(编号:40871159);国家高技术研究发展计划课题“作物水分胁迫信息的遥感定量反演与同化技术研究”(编号:2007AA12Z139);欧盟FP7项目“The 7th framework programme of the European Community for research, technological development and demonstration activities, WP (work package) 9: Satellite based drought monitoring system of pilot areas of China and India of Coordinated Asia-European long-term Observing system of Qinghai-Tibet Plateau hydro-meteorological processes and the Asian-monsoon systEm with Ground satellite Image data and numerical Simulations (CEOP-AEGIS) (Call FP7-ENV-2007-1 212921)”(编号:Call FP7-ENV-2007-1 212921)资助.

A Review of Retrieving of Land Surface Parameters Using the Land Surface Temperature-Vegetation Index Feature Space

Tian Miao 1, Wang Pengxin 1, Sun Wei 2   

  1. 1.College of Information and Electrical Engineering, China Agricultural University ,Beijing 100083,China;
    2.Surveying and Mapping Developing Research Center, State Bureau of Surveying and Mapping, Beijing 100830,China
  • Received:2009-12-18 Revised:2010-04-09 Online:2010-07-10 Published:2010-07-10
  • Contact: Wang Pengxin E-mail:wangpx@cau.edu.cn

遥感反演的地表温度(Ts)和植被指数(VI)构成的特征空间结合模型分析可以对显热通量、潜热通量及土壤含水量等地表参数进行估算。这种方法比较实用,且不过多地依赖地面观测数据。随着研究的深入,许多学者在Ts/VI特征空间基础上提出了更加丰富的空间变量。基于此,以不同空间变量为标准,分类介绍在Ts/VI特征空间的基础上对地表能量通量及土壤水分等参数的反演。其中包括在Ts/NDVI特征空间基础上提出温度植被干旱指数和条件植被温度指数来监测干旱;利用Ts/albedo特征空间反演蒸发比;用DSTV/VI特征空间反演蒸散量;用地气温差/植被指数特征空间反演蒸散量等。并介绍了Ts/VI特征空间与微波遥感结合反演地表含水量等相关研究的进展情况,最后提出未来研究的发展方向。

Using remotely sensed land surface temperature (Ts) and vegetation index (VI) feature space combined with models to estimate land surface energy fluxes and surface soil moisture is increasingly important as this method is simple and independent on ground observations. With the development of methods for using the feature space, many researchers propose other feature spaces based on physical and ecological meanings of the Ts/VI feature space. The basic idea behind all these techniques is that surface radiant temperature is sensitively dependent on the surface soil water content. The paper  aims to offer a comprehensive and systematic review of the feature spaces and their applications in retrieving land surface parameters. Prior to the review, the biophysical meanings and properties encapsulated in the Ts/VI feature space is elucidated since these represent the building block upon which all the Ts/VI methods described herein are based, and the drought monitoring approaches are summarized by using the Ts/VI feature space. Then, the evaporative fraction estimation using the Ts/albedo feature space, evapotranspiration estimation using the DSTV/VI (Diurnal Surface Temperature Variation) feature space and the feature space of the difference of surface temperature to air temperature (Ts-Ta) and soil adjusted vegetation index (SAVI) are all discussed. Finally the coupling of the Ts/VI feature space and microwave remote sensing data are discussed for soil surface moisture monitoring, and the further studies are proposed.

中图分类号: 

[1] Wang Pengxin, Wan Zhengming, Gong Jianya,et al. Advances in drought monitoring by using remotely sensed normalized difference vegetation index and land surface temperature products[J].Advanceds in Earth Science,2003, 18: 527-533.[王鹏新,Wan Zhengming,龚健雅,等.基于植被指数和土地表面温度的干旱监测模型[J].地球科学进展, 2003, 18: 527-533.]
[2] Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration[J].IEEE Transactions on Geoscience and Remote Sensing,1990, 28: 940-948.
[3] Carlson T N, Perry E M, Schmugge T J. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields[J].Agricultural and Forest Meteorology,1990, 52: 45-69.
[4] Carlson T N, Gillies R R, Schmugge T J. An interpretation of methodologies for indirect measurement of soil water content[J].Agricultural and Forest Meteorology,1995, 77: 191-205.
[5] Nemani R R, Running S. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data[J].Journal of Applied Meteorology,1989, 28: 276-284.
[6] Moran M S, Rahman A F, Washburne J C, et al. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semi-arid grassland[J].Agricultural and Forest Meteorology,1996, 80: 87-109.
[7] Han L J, Wang P X, Yang H, et al. Study on NDVI-Ts space by combining LAI and evapotranspiration[J].Science in China (D Series),2006, 49: 747-754. 
[8] Ridd M. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy of cities[J].International Journal of Remote Sensing,1995, 16: 2 165-2 185.
[9] Gillies R R, Carlson T N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models[J].Journal of Applied Meteorology,1995, 34: 745-756.
[10] Jiang L, Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations[J].Geophysical Research Letters, 1999, 26: 2 773-2 776.
[11] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of soil moisture status[J].Remote Sensing of Environment,2002, 79: 213-224.
[12] Qi Shuhua, Wang Changyao, Niu Zheng. Evaluating soil moisture status in China using the Temperature/Vegetation Dryness Index (TVDI)[J].Journal of Remote Sensing,2003, 7: 420-427.[齐述华,王长耀,牛铮.利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J].遥感学报, 2003, 7: 420-427.]
[13] Yao Chunsheng, Zhang Zengxiang, Wang Xiao. Evaluating soil moisture status in Xinjiang using the temperature vegetation dryness index (TVDI)[J].Remote Sensing Technology and Application, 2004, 19: 473-478.[姚春生,张增祥,汪潇.使用温度植被干旱指数法(TVDI)反演新疆土壤湿度[J].遥感技术与应用, 2004, 19: 473-478.]
[14] Ran Qiong, Zhang Zengxiang, Zhang Guoping, et al. DEM correction using TVDI to evaluate soil moisture status in China[J]. Science of Soil and Water Conservation,2005, 3: 32-36.[冉琼,张增祥,张国平,等.温度植被干旱指数反演全国土壤湿度的DEM订正[J].中国水土保持科学,2005, 3: 32-36.]
[15] Wang Pengxin, Gong Jianya, Li Xiaowen. Vegetation temperature condition index and its application for drought monitoring[J]. Geometics and Information  Sciences of Wuhan University, 2001, 26: 412-418.[王鹏新 , 龚健雅 , 李小文. 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报:信息科学版, 2001, 26: 412-418.]
[16] Sun Wei, Wang Pengxin, Han Lijuan, et al. Further improvement of the approach to monitoring drought using vegetation and temperature condition indexes from multi-years′ remotely sensed data[J].Transactions of the CSAE,2006, 22: 22-26.[孙威,王鹏新,韩丽娟,等. 条件植被温度指数干旱监测方法的完善[J]. 农业工程学报, 2006, 22: 22-26.]
[17] Sun W, Wang P X, Zhang S Y, et al. Using the vegetation temperature condition index for time series drought occurrence monitoring in the Guanzhong Plain, PR China[J].International Journal of Remote Sensing,2008, 29: 5 133-5 144.
[18] Wang Pengxin, Sun Wei. Comparison study on NDVI and LST based drought monitoring approaches[J].Journal of Beijing Normal University (Natural Science),2007, 43: 319-323.[王鹏新, 孙威. 基于植被指数和地表温度的干旱监测方法的对比分析[J].北京师范大学学报:自然科学版, 2007, 43: 319-323.]
[19] Yang Xi, Wu Jianjun, Yan Feng,et al. Assessment of regional soil moisture status based on characteristics of surface temperature / vegetation index space[J].Actaecologica Sinica,2009, 29: 1205-1 216.[杨曦,武建军,闫峰,等.基于地表温度——植被指数特征空间的区域土壤干湿状况[J].生态学报,2009, 29: 1 205-1 216.]
[20] Li Zhengguo, Wang Yanglin, Zhou Qingbo,et al. Studies on separation of time and space for surface water at the Loess Plateau based on TVDI method[J].Chinese Journal of Agricultural Resources and Regional Planning, 2008, 29(2): 13-20.[李正国,王仰麟,周清波,等. 基于TVDI方法的黄土高原地表水分时空分异研究[J].中国农业资源与区划, 2008, 29(2): 13-20.]
[21] Sun Wei. Quantification of the Vegetation Temperature Condition Index Drought Monitoring Approach[D].Beijing: China agricultural university,2008.[孙威.条件植被温度指数干旱监测方法的定量化研究[D].北京:中国农业大学, 2008.]
[22] Roerink G J, Su Z, Menenti M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance[J].Physics and Chemistry of the Earth: Hydrology Oceans and Atmosphere,2000, 25: 147-157.
[23] Gomez M, Olioso A, Sobrino J A, et al. Retrieval of evapotranspiration over the Aplilles/ReSeDA experimental site using airborne POLDER sensor and a thermal camera[J].Remote Sensing of Environment,2005, 96: 399-408.
[24] Sobrino J A, Gomez M, Jimenez-Munoz J, et al. A simple algorithm to estimate evapotranspiration from DAIS data: Application to the DAISEX campaigns[J].Journal of Hydrology,2005, 315: 117-125.
[25] Mallick K, Bhattacharya B K, Rao V U M, et al. Latent heat flux estimation in clear sky days over Indian agroecosystems using noontime satellite remote sensing data[J]. Agricultural and Forest Meteorology,2009, 149: 1 646-1 665.
[26] Chen J H, Kan C E, Tan C H, et al. Use of spectral information for wetland evapotranspiration assessment[J].Agricultural Water Management,2002, 55: 239-248.
[27] Wang K, Li Z, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter[J].Remote Sensing of Environment,2006, 102: 293-305.
[28] Venturini V, Bisht G, Islam S, et al. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida[J].Remote Sensing of Environment,2004, 93: 77-86.
[29] Batra N, Islam S, Venturini V, et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR for clear sky days over the Southern Great Plains[J]. Remote Sensing of Environment, 2006, 103: 1-15.
[30] Stisen S, Sandholt I, Norgaard A, et al. Combining the triangle method with thermal inertia to estimate regional evapotranspiration applied to MSG SEVIRI data in the Senegal River basin[J]. Remote Sensing of Environment,2008, 112:1 242-1 255.
[31] Mallick K, Bhattacharya B K, Patel N K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI[J].Agricultural and Forest Meteorology,2009, 149: 1 327-1 342.
[32] Petropoulos G, Carlson T N, Wooster M J. A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture[J].Progress in Physical Geography,2009, 33: 224-250.
[33] Wan Z,Wang P, Li X, et al. Using MODIS land surface temperature and Normalized Difference Vegetation Index products for monitoring drought in the Southern Great Plains, USA[J].International Journal of Remote Sensing,2004, 25: 61-72.

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[3] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[4] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[5] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[6] 权凌, 周纪, 李明松, 代冯楠, 李国全. 基于时间序列建模的城市热岛时间尺度成分分离方法与应用[J]. 地球科学进展, 2014, 29(6): 723-733.
[7] 王康, 张廷军. 中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J]. 地球科学进展, 2013, 28(11): 1269-1275.
[8] 祝善友,张桂欣. 近地表气温遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 724-730.
[9] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[10] 施生锦,黄彬香,刘绍民,杨燕,黄勇彬,徐自为. 大尺度水热通量观测系统的研制[J]. 地球科学进展, 2010, 25(11): 1128-1138.
[11] 郑宁,张劲松,孟平,黄辉,高峻,贾长荣,任迎丰. 基于闪烁仪观测低丘山地人工混交林通量印痕与源区分布[J]. 地球科学进展, 2010, 25(11): 1175-1186.
[12] 朱治林, 孙晓敏, 贾媛媛, 温学发, 张仁华, 袁国富, 唐新斋. 基于大孔径闪烁仪(LAS)测定农田显热通量的不确定性分析[J]. 地球科学进展, 2010, 25(11): 1199-1207.
[13] 王建林,温学发 ,孙晓敏,王秋凤,王辉民,刘允芬. 涡动相关系统和小孔径闪烁仪观测的森林显热通量的异同研究[J]. 地球科学进展, 2010, 25(11): 1217-1227.
[14] 白洁,刘绍民,丁晓萍. 海河流域不同下垫面上大孔径闪烁仪观测显热通量的时空特征分析[J]. 地球科学进展, 2010, 25(11): 1187-1198.
[15] 卢俐,刘绍民,徐自为,白洁,王介民. 大孔径闪烁仪和涡动相关仪观测显热通量之间的尺度关系[J]. 地球科学进展, 2010, 25(11): 1273-1282.
阅读次数
全文


摘要