地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1293 -1303. doi: 10.11867/j.issn.1001-8166.2006.12.1293

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

珠峰北坡地区近地层大气湍流与地气能量交换特征
仲雷 1,2,3,马耀明 1,4,苏中波 5,刘新 1,李茂善 3,4,马伟强 3,4,王永杰 1,3   
  1. 1.中国科学院青藏高原研究所,北京 100085;2. 中国气象局成都高原气象研究所高原气象开放实验室,四川 成都 610071;3.中国科学院研究生院,北京 100039;4.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;5.International Institute for Geo-Information Science and Earth Observation,Enschede 7500,the Netherlands
  • 收稿日期:2006-10-11 修回日期:2006-10-24 出版日期:2006-12-15
  • 通讯作者: 马耀明(1964-),男,山西夏县人,研究员,博导,主要从事陆面过程和遥感应用研究. E-mail:ymma@itpcas.ac.cn
  • 基金资助:

    中国科学院知识创新工程项目“青藏高原全新世以来的环境变化与生态系统关系研究”(编号:KZCX3-SW-339);科技部社会公益研究专项“珠穆朗玛峰地区对全球变化的响应”(编号:2005DIA3J106);中国科学院知识创新工程重要方向项目“喜马拉雅山北坡地区地面大气与对流层大气交换研究”(编号:KZCX3-SW-231);国家自然科学基金项目“西藏高原能量水循环降雨共同观测研究”(编号:40520140126)资助.

Atmospheric Turbulence and Land-Atmosphere Energy Transfer Characteristics in the Surface Layer of the Northern Slope of Mt. Qomolangma Area

Zhong Lei 1,2,3,Ma Yaoming 1,4,Su Zhongbo 5,Liu Xin 1,Li Maoshan 3,4,Ma Weiqiang 3,4,Wang Yongjie 1,3   

  1. 1.Institute of Tibetan Plateau Research, the Chinese Academy of Sciences, Beijing 100085, China;2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China; 3.Cold and Arid Regions Environmental and Engineering Research Institute, the Chinese Academy of Sciences, Lanzhou 730000, China; 4.International Institute for Geo-Information Science and Earth Observation, Enschede 7500, The Netherlands
  • Received:2006-10-11 Revised:2006-10-24 Online:2006-12-15 Published:2006-12-15

利用珠峰北坡曲宗地区连续一年的大气观测资料(2005年4月至2006年3月),分析了珠峰北坡地区近地层大气湍流宏观统计特征和西南季风爆发前后地气能量交换特征。研究表明在珠峰北坡地区Monin-Obukhov相似定律同样适用。拟合得到了珠峰北坡曲宗地区近地层无因次风速分量方差以及温度和湿度归一化标准差和静力学稳定度的函数关系。研究得出曲宗地区能量平衡各分量(净辐射通量、感热通量、潜热通量和土壤热通量)以及地面加热场具有明显的季节变化和日变化规律。尤其是在西南季风的影响下,曲宗地区感热通量和潜热通量在季风爆发前后具有明显相反的变化趋势。其它特征参数(波文比和地表反射率)在西南季风爆发前后的变化规律也十分明显。

Based on the turbulent data collected at Quzong site, on the northern slope of Mt. Qomolangma, from April 2005 to March 2006, macro-scale turbulent statistical characteristics and land-atmosphere energy transfer before and after the onset of southwest monsoon were acquired by the eddy correlation method. It was found that Monin-Obukhov similarity theory is applicable for Mt. Qomolangma area. The relationship between normalized wind speed standard deviation and atmospheric stability, variances of normalized temperature and humidity standard deviation with atmospheric stability were simulated in the study. It was also found that energy balance components (net radiation flux, sensible heat flux, latent heat flux and soil heat flux) and surface heating filed had evident diurnal and seasonal changes. Especially under the influence of southwest monsoon, the sensible heat flux and latent heat flux in Quzong area have evident opposite changing trends. The variation characteristics of other surface parameters (surface reflectance and Bowen ratio) is very clear before and after the breakout of  southwest monsoon.

中图分类号: 

[1] Ye Duzheng, Gao Youxi. Tibetan Plateau Meteorology[M]. Beijing: Science Press, 1979:1-278.[叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979:1-278.]

[2] Tsukamoto O, Sahashi K, Wang J. Heat budget and evapotranspiration at an oasis surface surrounded by desert[J]. Journal of the Meteorological Society of Japan, 1995, 73(5): 925-935.

[3] Tao Shiyan, Chen Lianshou, Xu Xiangde, et al. Progresses of the Theoretical Study in the Second Tibetan Plateau Experiment of Atmospheric Sciences (Part)[M]. Beijing: China Meteorological Press, 1998: 1-348.[陶诗言,陈联寿,徐祥德,.第二次靑藏高原大气科学试验理论硏究进展()[M].北京:气象出版社,1998:1-348.]

[4] Liu Huizhi, Hong Zhongxiang. Turbulent characteristics in the surface layer over Gerze area in the Tibetan plateau[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(3): 289-300.[刘辉志,洪钟祥.青藏高原改则地区近地层湍流特征[J].大气科学,2000,24(3):289-300.]

[5] Ma Yaoming, Osamu Tsukamoto, Wu Xiaoming, et al. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan plateau area[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(5): 715-722.[马耀明,塚本修,吴晓鸣,.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学,2000,24(5):715-722.]

[6] Ma Y, Tsukamoto O. Combining Satellite Remote Sensing with Field Observations for Land Surface Heat Fluxes over Inhomogeneous Landscape[M]. Beijing: China Meteorological Press, 2002: 1-172.

[7] Ma Y, Su Z, Li Z, et al. Determination of regional net radiation and soil heat flux over a heterogeneous landscape of the Tibetan Plateau[J]. Hydrological Processes, 2002b, 16: 2 963-2 971.

[8] Zhou Mingyu, Xu Xiangde, Bian Lin'gen, et al. Observational Analysis and Dynamic Study of Atmospheric Boundary Layer on Tibetan Plateau[M]. Beijing: China Meteorological Press, 2000:1-97.[周明煜,徐祥德,卞林根,.青藏高原大气边界层观测分析与动力学研究[M].北京:气象出版社,2000:1-97.]

[9] Bian Lin'gen, Lu Longhua, Cheng Yanjie, et al. Turbulent measurement over the southeastern Tibetan pleteau[J]. Quarterly Journal of Applied Meteorology, 2001, 12(1): 1-13.[卞林根,陆龙骅,程彦杰,.青藏高原东南部昌都地区近地层湍流输送的观测研究[J].应用气象学报,2001,12(1): 1-13.]

[10] Tanaka K, Ishikawa H, Hayashi T, et al. Surface energy budget of Amdo on the eastern Tibetan plateau using GAME/Tibet IOP98 data[J]. Journal of the Meteorological Society of Japan, 2001, 79(1B): 505-517.

[11] Zhang Hongsheng, Li Fuyu, Chen Jiayi, et al. Statistical characteristics of atmospheric turbulence in different underlying surface conditions[J]. Plateau Meteorology,2004,23(5):598-604.[张宏升,李富余,陈家宜,.不同下垫面湍流统计特征研究[J].高原气象,2004,23(5):598-604.]

[12] Arya S P S, Sundararajan A. An assessment of proposed similarity theories for the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1976, 10(2):149-166.

[13] Panofsky H A, Tennekes H, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Boundary-Layer Meteorology,1977, 11: 355-361.

[14] Wang Jiemin, Liu Xiaohu, Ma Yaoming. The turbulent structure and transfer characteristics of surface layer atmosphere over Gobi region in HEIFE[J]. Acta Meteorologica Sinica, 1993, 51(3): 343-350.[王介民,刘晓虎,马耀明.HEIFE戈壁地区近地层大气的湍流结构和输送特征[J].气象学报,1993,51:343-350.]

[15] Ma Yaoming, Ma Weiqiang, Hu Zeyong, et al. Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang plateau[J]. Plateau Meteorology,2002, 21(5):514-517.[马耀明,马伟强,胡泽勇,.青藏高原草甸下垫面湍流强度相似性关系分析[J].高原气象,2002,21(5):514-517.]

[16] Qi Yongqiang, Wang Jiemin, Jia Li, et al. A study of turbulent transfer characteristics in Wudaoliang area of Qinghai-Xizang plateau[J]. Plateau Meteorology,1996, 15(2):172-177.[祁永强,王介民,贾立,.青藏高原五道梁地区湍流输送特征的研究[J].高原气象,1996,15(2):172-177.]

[17] Xu Xingkui, Lin Zhaohui. Remote sensing retrieval of surface monthly mean albedo in Qinghai-Xizang plateau[J]. Plateau Meteorology, 2002, 21(3): 233-237.[徐兴奎,林朝晖.青藏高原地表月平均反照率的遥感反演[J].高原气象,2002,21(3):233-237.]

[1] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[2] 程雪玲,胡非,赵松年,姜金华. 格子玻尔兹曼方法及其在大气湍流研究中的应用[J]. 地球科学进展, 2007, 22(3): 249-260.
[3] 季劲钧,黄玫. 青藏高原地表能量通量的估计[J]. 地球科学进展, 2006, 21(12): 1268-1272.
阅读次数
全文


摘要