Please wait a minute...
img img
高级检索
地球科学进展  2007, Vol. 22 Issue (3): 249-260    DOI: 10.11867/j.issn.1001-8166.2007.03.0249
综述与评述     
格子玻尔兹曼方法及其在大气湍流研究中的应用
程雪玲,胡 非,赵松年,姜金华
中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029
The Application of Lattice Boltzmann Method in the Atmospheric Turbulence Study
CHENG Xue-ling,HU Fei, ZHAO Song-nian, JIANG Jin-hua
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China
 全文: PDF(360 KB)  
摘要:

文章的目的是对格子玻尔兹曼方法进行系统的介绍,格子玻尔兹曼方法(Lattice Boltzmann Method)的出现直接来源于20世纪60年代的元胞自动机(Cellular Automata)思想,而这一方法用于解决流动现象时,又可以追溯到19世纪的分子运动论,求解的是Boltzmann提出的玻尔兹曼输运方程,因此将这一方法称为格子玻尔兹曼方法,之前也被称为格子气自动机(Lattice Gas Automaton)。该方法多用于研究复杂现象,如材料晶体凝聚时的生长过程、城市土地利用的演化等方面。在20世纪70年代由Hardy、Pomeau和Pazzis建立了第一个用于研究流体运动的格子气自动机,此后,这一方法被广泛用来模拟各种流动问题,诸如二相流、孔隙介质中的渗流等,并根据这一方法开发了相应的商业软件PowerFlow。同时,格子玻尔兹曼方法由于其在微观水平描述运动的特点,成为研究湍流的一个很好的数值计算工具,特别是用其进行直接数值模拟(DNS)计算,成为继传统的差分法、有限体积法和谱方法之后的又一有力的手段。而作为大气运动的一个主要现象的大气湍流,比普通湍流更加复杂,在这里着重介绍了大气湍流的特点和应用格子玻尔兹曼方法模拟湍流的发展过程。

关键词: 元胞自动机格子气直接数值模拟大气湍流格子玻尔兹曼    
Abstract:

The objective of this paper is to systemically introduce the lattice Boltzmann method from its mathematic and physical bases, and to investigate broadly its application in every field. The lattice Boltzmann method based on the idea of cellular automaton was proposed by John von Neumann in the 1960's. The cellular automaton simulates the parallelizable character of the brain and constructs the dynamic evolvement system. That starts a new direction to solve the complex problems. When it is used to solve the flow problem, it combines with the molecule kinetic theory of nineteenth century to solve Boltzmann transport equation. It means to study the flow by simulating the molecules movement in the flow. So it is also called lattice Boltzmann method, or lattice gas automaton. From investigation, it can be seen that the application fields are very broad. For example, it is used to simulate the crystal agglomeration, the evolvement of city land use, the traffic flow, the seismic wave, the spread of fire in the forest, the prevalence of virus and the spread of public opinion. By this method, good results are obtained. In the 1970's, Hardy, Pomeau and Pazzis built the first lattice gas automaton to simulate flow. Then, because it can explain flow from microcosmic level, it is very suitable to solve complex flow such as multiphase flow, porous flow and snow grain transport in the wind. Moreover,PowerFlow  the commercial software was developed based on the lattice Boltzmann method. For turbulence, which is the old problem—turbulence, many methods are used and LBM now gradually becomes a new way to directly simulate it because it can calculate in the molecule level. The atmospheric turbulence is more complex then usual turbulence. Here, we especially introduce the atmospheric turbulence character and give an elementary project to simulate by LBM.

Key words: Lattice gas    Direct numerical simulation    Atmospheric turbulence.    Lattice Boltzmann method    Cellular automata
收稿日期: 2006-11-27 出版日期: 2007-03-10
:  P425.2  
基金资助:

国家自然科学基金项目“大气湍流能量级串机理及其格子气数值模拟的研究”(编号:40405004);国家自然科学基金重点项目“非均匀地表通量与大气边界层过程的研究”(编号:40233030);国家自然科学基金项目“非均匀下垫面上中尺度通量参数化的研究”(编号:40605006)资助.

通讯作者: 程雪玲(1971-),女,辽宁大连人,副研究员,主要从事大气边界层湍流理论以及湍流扩散的数值模拟等方面的研究.E-mail: chengxl@mail.lapc.ac.cn     E-mail: chengxl@mail.lapc.ac.cn
作者简介: 程雪玲(1971-),女,辽宁大连人,副研究员,主要从事大气边界层湍流理论以及湍流扩散的数值模拟等方面的研究.E-mail: chengxl@mail.lapc.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程雪玲
赵松年
姜金华
胡非

引用本文:

程雪玲,胡非,赵松年,姜金华. 格子玻尔兹曼方法及其在大气湍流研究中的应用[J]. 地球科学进展, 2007, 22(3): 249-260.

CHENG Xue-ling,HU Fei, ZHAO Song-nian, JIANG Jin-hua. The Application of Lattice Boltzmann Method in the Atmospheric Turbulence Study. Advances in Earth Science, 2007, 22(3): 249-260.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2007.03.0249        http://www.adearth.ac.cn/CN/Y2007/V22/I3/249

[1]Chopard B, Droz M. Cellular Automata Modeling of Physical Systems[M]. London: Cambridge University Press, 1998.[祝玉学,赵学龙译. 物理系统的元胞自动机模拟[M]. 北京:清华大学出版社,2003.]
[2]Hardy J, Pomeau Y, Pazzis O De. Molecular Dynamics of a classical lattice gas: Transport properties and time correlation functions[J]. Physics Review A, 1976,13:1 949-1 960.
[3]McNamara G G, Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata[J]. Physical Review Letters, 1988, 61:2 332-2 335.
[4]Higuera F, Jimenez J, Succi S. Boltzmann approach to lattice gas simulations[J]. Europhysics Letters, 1989, 9:663.
[5]Feng Duan, Feng Shaotong. The World of Entropy[M]. Beijing: Science Press, 2005.[冯端,冯少彤. 溯源探幽——熵的世界[M]. 北京:科学出版社,2005.]
[6]Harris Stewart. An Introduction to the Theory of the Boltzmann Equation[M]. New York: Holt, Rinehart and Winston, 1971.
[7]Li Yuanxiang, Kang Lishan, Chen Yuping. Lattice Gas Automaton[M]. Beijing: Tsinghua University Press, 1994.[李元香,康立山,陈毓屏. 格子气自动机[M]. 北京:清华大学出版社,1994.]
[8]Higuera F, Jimenez J, Succi S. Lattice gas dynamics with enhanced collision[J]. Europhysics Letters, 1989, 9:345.
[9]Quian Y H, Humieres D, Lallemand P. Lattice BGK Models for Navier-Stokes Equation[J]. Europhysics Letters, 1992, 17(6):470-484.
[10]Bhatnager P,Gross E P, Krook M K. A model for collision process in gases[J]. Physics Review, 1954, 94:511.
[11]Pesavento U. An implementation of von Neumann's self-reproducing machine[J]. Artificial Life,1995, 2:337-354.
[12]Yan Guangwu. Advances of the studies on the cellular automata and artificial life[J]. Journal of Jilin University,2003, 41(1):40-44.[闫广武. 元胞自动机与人工生命研究进展[J]. 吉林大学学报,2003,41(1):40-44.]
[13]Wolfram S. Statistical mechanics of cellular automata[J]. Review of Modern Physics, 1983, 55(3): 601-644.
[14]Wolfram S. Computation theory of cellular automata[J]. Communication in Mathematicat Physics, 1984, 95: 15-57.
[15]Vichniac G. Simulating physics with cellular automata[J]. Physica D,1984, 10:96-115.
[16]Yu Lu, Hao Bolin, Chen Xiaosong. Phase Transitions and Critical Phenomena[M]. Beijing: Science Press, 2005.[于禄,郝柏林,陈晓松. 边缘奇迹——相变和临界现象[M]. 北京:科学出版社,2005.]
[17]Zheng Chengwu, Lan Yongjun, Xiao Namin, et al. Mesoscale simulation of Static recrystallization of hot deformed austenite in a low carbon steel[J]. Acta Metallurgica Sinica,2006, 42(5): 474-480.[郑成武,兰勇军,肖纳敏,等.热变形低碳钢中奥氏体静态再结晶介观尺度模拟[J].金属学报,2006,42(5):474-480.]
[18]Guo Dayong, Yang Yuansheng. Numerical simulation of dendrite development in ternary alloy solidification[J]. Foundry,2006, 55(6): 601-603.[郭大勇,杨院生.三元合金凝固过程枝晶生长数值模拟[J].铸造,2006,55(6):601-603.]
[19]Wang Shimin, Zhu Hehua, Feng Xiating, et al. Influence of heterogeneity on macroscopical crack form of the brittle rock[J]. Rock and Soil Mechanics,2006, 27(2): 224-227. [王士民,朱合华,冯夏庭,等.细观非均匀性对脆性岩石材料宏观破坏形式的影响[J].岩土力学,2006,27(2):224-227.]
[20]Dong Qiaoliang, Zhou Yubing, Yao Yao. Seismic simulating by using lattice Boltzmann method[J].Earth Science—Journal of China University of Geosciences,1997, 22(6): 638-642. [董桥梁,周玉冰,姚姚.格子Boltzmann方法地震波场模拟[J].地球科学——中国地质大学学报,1997,22(6):638-642.]
[21]Wang Zhenli, Li Youming. Parallel algorithm for simulating seismic wave propagation by cellular automata[J]. Chinese Journal of Geophysics,1999, 42(3): 410-415.[王真理,李幼铭.细胞自动机地震波模拟的并行化算法[J].地球物理学报,1999,42(3):410-415.]
[22]Zhang Peihong, Huang Xiaoyan, Wan Huanhuan, et al. Study on adaptive cellular automation Model on crowd pedestrian Flow[J]. Journal of Shenyang Jianzhu University,2006, 22(2): 289-293. [张培红,黄晓燕,万欢欢,等.人员群集流动自适应元胞自动机模型研究[J].沈阳建筑大学学报,2006,22(2):289-293.]
[23]Liu Muren, Deng Minyi, Kong Lingjiang. The cellular automata model for public opinion evolution[J]. Journal of Guangxi Normal University, 2002, 20(2): 1-4.[刘慕仁,邓敏艺,孔令江.舆论传播的元胞自动机模型[J].广西师范大学学报,2002,20(2):1-4.]
[24]Yan Jinfeng, Chen Xi. Analysis and stimulation method discussion on LUCC of arid region based on GIS[J]. Arid Land Geography, 2003, 26(2): 185-191.[阎金凤,陈曦.基于GIS的干旱区LUCC分析和模拟方法探讨[J].干旱区地理,2003,26(2):185-191.]
[25]Luo Ping, Du Qingyuan, Lei Yuanxin, et al. Cellular automata based on geographic feature and urban land use evolvement[J].Geomatics and Information Science of Wuhan University,2004, 29(6): 504-507. [罗平,杜清远,雷元新,等.地理特征元胞自动机及城市土地利用演化研究[J].武汉大学学报,2004,29(6):504-507.]
[26]Hou Xiyong, Chang Bin, Yu Xinfang. Land use change in Hexi corridor based on A-Markov methods[J].Transactions of the CSAE,2004, 20(5): 286-291.[侯西勇,常斌,于信芳.基于CA-Markov的河西走廊土地利用变化研究[J].农业工程学报,2004,20(5):286-291.]
[27]Chen Jianping, Ding Huoping, Wang Gongwen, et al. Desertification evolution modeling through the integration of GIS and cellular automata[J].Journal of Remote Sensing,2004, 6(3): 254-260. [陈建平,丁火平,王功文,等.基于GIS和元胞自动机的荒漠化演化预测模型[J].遥感学报,2004,6(3):254-260.]
[28]Cui Weihong, Zhang Xianfeng. Study on dynamic monitoring and dynamic simulating of land resource[J]. Geo-Information Science,2002, 1: 79-85.[崔伟宏,张显峰.土地资源的动态监测和动态模拟研究[J].地球信息科学,2002,1:79-85.]
[29]Frisch U, Hasslacher B, Pomeau Y. Lattice gas automata for the Navier-Stokes equation[J].Physical Review Letters,1986,56(14):1 505-1 508.
[30]Wolfram S. Cellular automation fluid: Basic theory[J].Journal of Statistical Physics,1986, 45:471.
[31]Qian Yuehong, d'Humieres D, Pomeau Y, et al. The newest development of lattice gas automaton Dynamics[J].Mechanics in Engineering,1990, 12(1): 7-16. [钱跃宏, d'Humieres D,Pomeau Y,等.格子气流体动力学及其最新进展[J].力学与实践,1990,12(1):7-16.]
[32]Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: Theory and applications[J].Physics Reports,1992, 222(3): 145-197.
[33]Shiyi Chen, Gary D Doolen. Lattice Boltzmann Method for fluid flows[J].Annual Review of Fluid Mechanics,1998, 30:329-364.
[34]Shan Xiaowen, Chen Hudong. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Physical Review E,1993, 47(3):1 815-1 819.
[35]Martys N S, Chen Hudong. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method[J].Physical Review E,1996, 53(1):743-750.
[36]Zhang Raoyang, Chen Hudong. Lattice Boltzmann method for simulations of liquid-vapor thermal flows[J].Physical Review E,2003, 67:066711.
[37]Zhan Hongren, Li Dongyan, Wang Guoheng. Lattice gas automata modeling on evaporation process of porous media[J].Chemical Equipment Technology,2005, 26(6): 1-5.[战洪仁,李冬艳,王国恒.多孔介质干燥过程的格子气自动机法模拟[J].化工装备技术,2005,26(6):1-5.]
[38]Zheng Zhong, Gao Xiaoqiang, Shi Wanyuan. Lattice gas automata modeling of fluid flow through porous media[J]. Journal of Chemical Industry and Engineering,2001, 52(5): 406-409. [郑忠,高小强,石万元.多孔介质中流体流动的格子气自动机模拟[J].化工学报,2001,52(5):406-409.]
[39]Zheng Zhong, Gao Xiaoqiang. Lattice gas automata method for modeling fluid flow and heat transfer in metallurgical porous media[J].Acta Metallurgica Sinica,2000, 36(4): 433-437.[郑忠,高小强.格子气自动机法模拟冶金多孔介质传输现象[J].金属学报,2000,36(4):433-437.]
[40]Yue Wenzheng, Tao Guo, Zhu Keqin. Simulation of electrical transport properties in oil-water saturated porous media with 2D lattice gas automata[J].Chinese Journal of Geophysics,2005, 48(1): 189-195.[岳文正,陶果,朱克勤.二维格子气自动机模拟孔隙介质的电传输特性[J].地球物理学报,2005,48(1):189-195.]
[41]Surmas R, Santos L, Philippi P. Lattice Boltzmann simulation of the flow interference in bluff body wakes[J].Future Generation Computer Systems,2004, 20:951-958.
[42]Takada Naoki, Tsutahara Michihisa. Evolution of viscous flow around a suddenly rotating circular cylinder in the lattice Boltzmann method[J].Computers & Fluids,1998, 27(7): 807-828.
[43]Feng Shide, Zhao Ying, Gao Xianlin, et al. The simulation of 2D flow around a cylinder by lattice BGK model[J].Acta Mechanica Sinica,2002, 34:254-258.[冯士德,赵颖,郜宪林,等.用格子BGK模型模拟两维圆柱绕流[J]. 力学学报,2002,34:254-258.]
[44]Crouse B, Krafczyk M, Kuhner S,et al. Indoor air flow analysis based on lattice Boltzmann methods[J].Energy and Buildings,2002, 34:941-949.
[45]Yu Huidan, Zhao Kaihua. Lattice Boltzmann method for compressible flows with high Mach numbers[J].Physical Review E,2000, 61(4):3 867-3 870.
[46]Liu Feng, Hu Fei. Application of lattice Boltzmann method in simulating reflection and diffraction of surge waves[J].Journal of Hydraulic Engineering,2004, (3):22-30.[刘蜂,胡非.用格子Boltzmann方法模拟涌波的反射与绕射[J].水利学报,2004,(3):22-30.]
[47]Yu huidan, Zhao Kaihua. Rossby vortex simulation on a paraboloidal coordinate system using the lattice Boltzmann method[J].Physical Review E,2001, 64:056703.
[48]Liu Feng, Hu Fei. A preliminary study on the construction of atmospheric dynamic models with lattice Boltzmann method[J].Acta Meteorologica Sinica,2003, 61(3): 267-274.[刘峰,胡非.用格子Boltzmann方法构建大气动力学模式的初步研究[J].气象学报,2003,61(3):267-274.]
[49]Liu Feng, Hu Fei. Lattice Boltzmann method to simulate barotropic atmosphere[J]. Journal of the Graduate School of the Chinese Academy of Sciences,2003, 20(2): 168-171.[刘峰,胡非.用格子Boltzmann方法模拟正压大气运动[J].中国科学院研究生院报,2003,20(2):168-171.]
[50]Buick J, Greated C. Lattice Boltzmann modeling of interfacial gravity waves[J].Physics of Fluids,1998, 10(6):1 490-1 511.
[51]Frisch U. Turbulence-The Legacy of A. N. Kolmogorov[M].London: Cambridge University Press, 1996.
[52]Frisch U, Orszag S. Turbulence-challenges for theory and experiments[J].Physics Today,1990, 43:24-32.
[53]Sreenivasan K R. Fluid turbulence[J].Review of Modern Physics,1999, 71:383-395.
[54]Chen Hudong, Satheesh Kandasamy, Steven Orszag, et al. Extended Boltzmann kinetic equation for turbulent flows[J]. Science,2003, 301:633-636.
[55]Kolmogorov A N. Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers[J]. Proceeding of the Royal Society of London A, 1991, 434:9-13.
[56]Yakhot V,Orszag S. Renormalization group analysis of turbulence I. Basic theory[J]. Journal of Science Comput,1986, 1:3-51.
[57]Yakhot V, Orszag S, Thangam S, et al. Development of turbulence models for shear flows by a double expansion technique[J].Physics of Fluids A,1992, 4:1 510-1 520.
[58]Kuchemann D. Report on the IUTAM symposium on concentrated vortex motion in fluids[J].Journal of Fluid Mechanics,1965, 21:1.
[59]Ma Bing. The Identification and Visualization of Vortex[D]. Beijing: Tsinghua University, 1997.[马兵. 涡旋的识别与可视化[D]. 北京:清华大学,1997.]
[60]Kline S J, Reynolds W C, Schraub F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics,1967, 30:741.
[61]Chen Jian. Direct Numerical Simulation of Spatial Smooth Pipe Flow Transition[D]. Beijing: Tsinghua University, 2002.[陈健. 空间发展光滑圆管转捩的直接数值模拟[D]. 北京:清华大学,2002.]
[62]Wu Minwei. Numerical Research on Turbulent Pipe Flow[D]. Beijing: Tsinghua University, 2002.[伍敏伟.圆管湍流的数值研究[D]. 北京:清华大学,2002.]
[63]Martinez D, Matthaeus W, Chen S. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics[J]. Physics Fluids,1994, 6(3):1 285-1 298.
[64]Yu H, Girimaji S, Luo L. Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence[J].Physical Review E,2005, 71:016708.
[65]He Xiaoyi, Chen Shiyi, Zhang Raoyang. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor Instability[J].Journal of Computational Physics,1999, 152:642-663.
[66]Zhang Raoyang, He Xiaoyi, Doolen Gary, et al. Surface tension effects on two-dimensional two-phase Kelvin-Helmholtz instabilities[J].Advances in Water Resources,2001, 24:461-478.
[67]Boghosian B, Yepez J, Coveney P, et al. Entropic lattice Boltzmann methods[J]. Proceeding of the Royal Society of London A,2001, 457:717-766.
[68]Hu Fei, Cheng Xueling, Zhao Songnian, et al. Hard state of the urban canopy layer turbulence and its self-similar multiplicative cascade models[J].Science in China (Series D),2005, 35(suppl. I):66-72.[胡非,程雪玲,赵松年,等.城市冠层中温度脉动的硬湍流特性和相似性级串模型[J].中国科学:D辑,2005,35(增刊1):66-72.]
[69]Landau L D, Lifshitz E M. Fluid Mechanics[M]. Oxford: Pergamon Press, 1987.
[70]She Z S, Jackson E, Orszag S A. Intermittent vortex structures in homogeneous isotropic turbulence[J].Nature,1990, 344:226-228.
[71]She Z S, Leveque E. Universal scaling laws in fully developed turbulence[J].Physical Review Letters,1994, 72:336-338.
[72]Ruelle D, Takens F. On the nature of turbulence[J].Communication in Mathematical Physics,1971, 20:167-192.
[73]Benzi R, Biferale L, Ciliberto S, et al. Generalized scaling in fully developed turbulence[J].Physica D,1996, 96:162-181.
[74]Zhao Songnian. Synchrocascade pattern in the atmospheric turbulence[J].Journal of Geophysical Research,2003, 108(D8):4 238.doi,10.1029/2002JD002354.
[75]She Z S. On the scaling laws of thermal turbulent convection[J].Physics Fluids A,1989, 1(6): 911-913.
[76]Ching E S C. Probability densities of turbulent temperature fluctuations[J].Physics Rewiew Letters,1993, 70(3):283-286.
[77]Pope S B, Ching E S C. Stationary probability density functions: an exact result[J].Physics Fluids A,1993, 5(7):1 529-1 531.
[78]Heslot F, Castaing B, Libchaber A. Transition to turbulence in helium gas[J].Physics Review A,1987,36:5 870-5 873.
[79]Castaing B, Gunaratne G, Heslot F, et al. Scaling of hard thermal turbulence in Rayleigh-Bernard convection[J].Journal of  Fluid Mechanies,1989, 204:1-30.
[80]Wu X Z, Kadannoff L, Libchaber A, et al. Frequency power spectrum of temperature fluctuations in free convection[J].Physical Review Letters,1990, 64:2 140-2 143.
[81]Feng Shide, Zhao Ying, Gao Xianlin, et al. Some progress in the lattice Boltzmann model and hydrodynamic equations[J].Acta Mechanic Sinica,2002, 34:254-258.[冯士德,赵颖,郜宪林,等. 用格子Boltzmann模型的改进与流体力学方程[J]. 力学学报,2002,34:254-258.]
[82]He Xiaoyi, Chen Shiyi, Doolen Gary D. A novel thermal model for the lattice Boltzmann method in incompressible limit[J].Journal of Computational Physics,1998, 146: 282-300.
[83]Shi Yong, Zhao T S, Guo Z L. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit[J]. Physical Review E,2004, 70:066310.

[1] 黎夏,李丹,刘小平,何晋强. 地理模拟优化系统GeoSOS及前沿研究[J]. 地球科学进展, 2009, 24(8): 899-907.