地球科学进展 ›› 2014, Vol. 29 ›› Issue (8): 890 -902. doi: 10.11867/j.issn.1001-8166.2014.08.0890

上一篇    下一篇

帕米尔弧形构造带新生代构造演化研究进展
陈汉林 1, 2, *( ), 陈沈强 1, 2, *, 林秀斌 1, 2, *   
  1. 1 浙江大学地球科学系, 浙江 杭州 310027
    2 教育部含油气盆地构造研究中心, 浙江 杭州 310027
  • 收稿日期:2014-05-26 修回日期:2014-07-02 出版日期:2014-09-16
  • 通讯作者: 陈汉林,陈沈强,林秀斌 E-mail:hlchen@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目“帕米尔弧形构造带东北缘的扩展过程及构造与沉积响应”(编号:D021101)资助

A Review of the Cenozoic tectonic evolution of Pamir Syntax

Hanlin Chen 1, 2, *( ), Shenqiang Chen 1, 2, Xiubin Lin 1, 2   

  1. 1 Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China
    2 Research Center for the Structures in Oil and Gas Bearing Basin, Ministry of Education, Hangzhou 310027, China
  • Received:2014-05-26 Revised:2014-07-02 Online:2014-09-16 Published:2014-09-17
  • Contact: Hanlin Chen E-mail:hlchen@zju.edu.cn

帕米尔弧形构造带有巨大的地壳缩短量、近双倍的地壳增厚、巨大的海拔高程、同造山伸展作用, 对塔西南新生代构造变形、沉积和古气候影响重大。但是, 对于帕米尔的构造过程尚存在争议。基于前人研究成果, 可将帕米尔新生代构造演化过程归结如下:印度—欧亚板块的碰撞导致帕米尔在新生代早期开始构造抬升, 并在新生代晚期持续抬升。帕米尔北缘的主帕米尔逆冲断裂(MPT)和帕米尔前缘逆冲推覆系(PFT)可能在早—中中新世开始活动;东缘喀喇昆仑断裂(KKF)北段的起始活动时间在早—中中新世, 喀什—叶城走滑系统(KYTS)则于晚始新世—早中新世开始活动, 表明帕米尔可能在约20 Ma BP开始呈弧形向北挤入欧亚板块。10~7 Ma BP帕米尔内部的公格尔伸展系统开始发育。至上新世, KKF北段停止活动;KYTS在晚中新世或上新世的走滑速率大幅减小, 表明帕米尔与塔里木板块间的相对运动量在不断减少。对于帕米尔弧形构造带形成及其演化动力学机制的更清晰界定还有赖于构造过程时空分布、造山带与盆地以及地壳浅表与地球深部过程的系统研究。

Pamir syntax, a region with vast crustal shortening, doubled crust thickness, huge topographic elevation, and synorogenic extension, profoundly influences the structural deformation, sedimentation and paleoclimate in southwestern Tarim basin. However, the orogenic process of the Pamir is still controversial. Based on the previous research work, the Cenozoic tectonic evolution of the Pamir is summarized as follows. Due to the northward propagation of the IndiaAsia collision and subsequently south dipping subduction along the Main Pamir Thrust, the Pamir experienced tectonic uplift during the Cenozoic. The onset of thrusting and/or slipping along the Main Pamir Thrust, Pamir Frontal Thrust, northern segment of the Karakorum fault and Kashgar-Yecheng transfer system indicates that the northward motion of the Pamir happened at least since ca. 20 Ma BP. The eastwest extension along the Kongur Shan extensional system has an initiation age of 10~7 Ma BP. The termination of slip along the northern segment of the Karakorum fault occurred in the Pliocene and the slip rate of the Kashgar-Yecheng transfer system decreased substantially during the late Miocene or Pliocene, possibly reflecting the substantial decrease of the relative motion magnitude between the Pamir and Tarim plate. To specifically understand the orogeny in Pamir, a couple of aspects of studies should be addressed in the future, involving the spatio-temporal variations of orogenic process, the basin-range coupling and the coupling between shallow crust and deep process.

中图分类号: 

图1 帕米尔构造简图(据文献[ 10 , 23 ]修改)
Fig.1 Simplified structural map of major tectonic domains within the Pamir (modified from references [ 10 , 23 ])
图2 帕米尔深部结构示意图(据文献[40]修改)
Fig.2 Cartoon showing the deep structure of the Pamir (modified from reference [40])
图3 帕米尔构造活动时间分布图 条带代表构造活动时间
Fig.3 Summary of the timing of tectonic activities in Pamir Boxes indicate the duration of tectonic activities
图4 帕米尔新生代构造演化图(据文献[ 68 ]修改)
Fig.4 Four schematic cross-sections illustrating the Cenozoic evolution of the Pamir (modified from reference [ 68 ])
图5 帕米尔构造演化运动学模型((a)~(d)据文献[23]修改;(e)和(f)据文献[10, 84]修改)
Fig.5 Models for the evolution of the Pamir ((a)~(d) are modified from reference [23]; (e) and (f) are modified from references [10, 84])
图6 帕米尔周缘地区古地磁旋转量分布简图(据文献[ 84 ]修改) 深灰色为白垩系数据, 灰色为古近系数据, 浅灰色为新近系数据
Fig.6 Simplified structural map of the Pamir collision zone showing the distribution of paleomagnetic rotations from Cretaceous and Cenozoic strata around the Pamir (modified from reference [ 84 ]) Dark grey indicates Cretaceous data, medium grey indicates Paleogene data, and light grey indicates Neogene data
[1] Burtman V, Molnar P.Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geological Society of America Special Paper, 1993, 286:1-76.
[2] Burtman V. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene[J]. Tectonophysics, 2000, 319:69-92.
[3] Beloussov V, Belyaevsky N, Borisov A, et al.Structure of the lithosphere along the deep seismic sounding profile:Tien Shan-Pamirs-Karakorum-Himalayas[J]. Tectonophysics, 1980, 70:193-221.
[4] Strecker M, Frisch W, Hamburger M, et al.Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan[J]. Tectonics, 1995, 14(5):1 061-1 079.
[5] Brunel M, Arnaud N, Tapponnier P, et al.Kongur Shan normal fault:Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir)[J]. Geology, 1994, 22:707-710.
[6] Hacker B, Luffi P, Lutkov V, et al.Near-ultrahigh pressure processing of continental crust:Miocene crustal Xenoliths from the pamir[J]. Journal of Petrology, 2005, 46(8):1661-1687.
[7] Searle M, Parrish R, Thow A, et al.Anatomy, age and evolution of a collisional mountain belt:The Baltoro granite batholith and Karakoram Metamorphic Complex, Pakistani Karakoram[J]. Journal of the Geological Society, 2010, 167:183-202.
[8] Ducea M, Lutkov V, Minaev V, et al.Building the Pamirs:The view from the underside[J]. Geological Society of America, 2003, 31(10):849-852.
[9] Xiao Ancheng, Yang Shufeng, Chen Hanlin, et al.Structural characteristics of thrust system in the front of the west Kunlun Mountains[J]. Earth Science Frontiers, 2000, 7(Suppl.):128-136.
[肖安成, 杨树锋, 陈汉林, 等.西昆仑山前冲断系的结构特征[J]. 地学前缘, 2000, 7(增刊):128-136.]
[10] Cowgill E.Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China[J]. GSA Bulletin, 2010, 122(1/2):145-161.
[11] Chen Hanlin, Luo Juncheng, Guo Qunying, et al.Deformation history and tectonic evolution of southeastern Tarim Basin in Mesozoic and Cenozoic[J]. Geotectonica et Metallogenia, 2009, 33(1):38-45.
[陈汉林, 罗俊成, 郭群英, 等.塔里木盆地东南缘中新生代变形史与构造演化[J]. 大地构造与成矿学, 2009, 33(1):38-45.]
[12] Cheng Xiaogan, Lei Ganglin, Chen Hanlin, et al.Cenozoic structural deformation of the Fusha-Keliyang area in the piedmont of the western Kunlun Mountains and its control on hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2011, 32(1):38-45.
[程晓敢, 雷刚林, 陈汉林, 等.西昆仑山前甫沙—克里阳地区新生代变形特征及油气控制作用[J]. 石油学报, 2011, 32(1):38-45.]
[13] Hu Jianzhong, Tan Yingjia, Zhang Ping, et al.Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2):222-231.
[胡建中, 谭应佳, 张平, 等.塔里木盆地西南缘山前带逆冲推覆构造特征[J]. 地学前缘, 2008, 15(2):222-231.]
[14] Shen Jun, Wang Yipeng, Zhao Ruibin, et al.Propagation of Cenozoic arcuate structures in northeast Pamir and northwest Tarim Basin[J]. Seismology and Geology, 2001, 23(3):381-389.
[沈军, 汪一鹏, 赵瑞斌, 等.帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征[J]. 地震地质, 2001, 23(3):381-389.]
[15] Qu Guosheng, Chen Jie, Chen Xin’an, et al.Intraplate deformation in the front of the West Kunlun-Pamir arcuate orogenic belt and the southwest Tarim foreland basin[J]. Geological Review, 1998, 44(4):419-429.
[曲国胜, 陈杰, 陈新安, 等.西昆仑—帕米尔造山带及其北缘前陆盆地板内变形构造[J]. 地质论评, 1998, 44(4):419-429.]
[16] Guo Z, Ruddiman W, Hao Q, et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416:159-163.
[17] Bosboom R, Dupont-Nivet G, Houben A, et al.Late Eocene Sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299:385-398.
[18] Garzione C, Ikari M, Basu A.Source of Oligocene to Pliocene sedimentary rocks in the Linxia Basin in northeastern Tibet from Nd isotopes:Implications for tectonic forcing of climate[J]. GSA Bulletin, 2005, 117(9/10):1 156-1 166.
[19] Graham S, Chamberlain C, Yue Y, et al.Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin[J]. American Journal of Science, 2005, 305(2):101-118.
[20] Kent-Corson M, Ritts B, Zhuang G, et al.Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2009, 282:158-166.
[21] Zhang Z, Wang H, Guo Z, et al.What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245:317-331.
[22] Ramstein G, Fluteau F, Besse J, et al.Efect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386:788-795.
[23] Robinson A, Yin A, Manning C, et al.Tectonic evolution of the northeastern Pamir:Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China[J]. GSA Bulletin, 2004, 116(7/8):953-973.
[24] Coutand I, Strecker M, Arrowsmith J, et al.Late Cenozoic tectonic development of theintramontane Alai Valley, (Pamir-Tien Shan region, central Asia):An example of intracontinental deformation due to the Indo-Eurasia collision[J]. Tectonics, 2002, 21(6):1 053.
[25] Chen Jie, Li Tao, Li Wenqiao, et al.Late Cenozoic and present tectonic deformation in the Pamir Salient, northwestern China[J]. Seismology and Geology, 2011, 33(2):241-259.
[陈杰, 李涛, 李文巧, 等.帕米尔构造结及邻区的晚新生代构造与现今变形[J]. 地震地质, 2011, 33(2):241-259.]
[26] Molnar P, Tapponnier P.Cenozoic Tectonics of Asia:Effects of a continental collision[J]. Science, 1975, 189:419-426.
[27] Windley B, Allen M, Zhang C, et al.Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18:128-131.
[28] Chen Jie, Ding Guoyu, Burbank D, et al.Late Cenozoic tectonics and seismicity in the southwestern Tianshan, China[J]. Earthquake Research in China, 2001, 17(2):134-155.
[陈杰, 丁国瑜, Burbank D, 等.中国西南天山山前的晚新生代构造与地震活动[J]. 中国地震, 2001, 17(2):134-155.]
[29] Sobel E, Chen J, Heermance R.Late Oligocene-Early Miocene initiation of shortening in the southwestern Chinese Tian Shan:Implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 2006, 247(1/2):70-81.
[30] Yang Shufeng, Chen Hanlin, Cheng Xiaogan, et al.Cenozoic uplifting and unroofing of southern Tian Shan, China[J]. Journal of Nanjing University (Natural Sciences), 2003, 39(1):1-8.
[杨树锋, 陈汉林, 程晓敢, 等.南天山新生代隆升和去顶作用过程[J]. 南京大学学报:自然科学版, 2003, 39(1):1-8.]
[31] Yin A, Harrison T.Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
[32] Robinson A.Geologic offsets across the northern Karakorum fault:Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 2009, 279:123-130.
[33] Schmidt J, Hacker B, Ratschbacher L, et al.Cenozoic deep crust in the Pamir[J]. Earth and Planetary Science Letters, 2011, 312(3/4):411-421.
[34] Mechie J, Kind R, Saul J.The seismological structure of the Tibetan Plateau crust and mantle down to 700 km depth[J]. Geological Society of London, 2011, 353:109-125.
[35] Ratschbacher L, Merle O, Davy P, et al.Lateral extrusion in the eastern Alps, part 1:Boundary conditions and experiments scaled for gravity[J]. Tectonics, 1991, 10(2):245-256.
[36] Negredo A, Replumaz A, Villasenor A, et al.Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region[J]. Earth and Planetary Science Letters, 2007, 259(1/2):212-225.
[37] Pegler G, Das S.An enhanced image of the Pamir-Hindu Kush seismic zone from relocated earthquake hypocentres[J]. Geophysical Journal International, 1998, 134:573-595.
[38] Vinnik L, Lukk A, Nersesov I.Nature of the intermediate seismic zone in the mantle of Pamirs-Hindu-Kush[J]. Tectonophysics, 1977, 38(3/4):T9-T14.
[39] Zhang J, Shan X, Huang X.Seismotectonics in the Pamir:An oblique transpressional shear and south-directed deep-subduction model[J]. Geoscience Frontiers, 2011, 2(1):1-15.
[40] Schneider F, Yuan X, Schurr B, et al.Seismic imaging of subducting continental lower crust beneath the Pamir[J]. Earth and Planetary Science Letters, 2013, 375:101-112.
[41] Sippl C, Schurr B, Tympel J, et al.Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography[J]. Earth and Planetary Science Letters, 2013, 384:165-177.
[42] Kumar P, Yuan X, Kind R, et al.The lithosphere-asthenosphere boundary in the Tien Shan-Karakoram region from S receiver functions:Evidence for continental subduction[J]. Geophysical Research Letters, 2005, 32:L7305, doi: 10.1029/2004GL 022291.
[43] Rowley D.Age of initiation of collision between India and Asia:A review of stratigraphic data[J]. Earth and Planetary Science Letters, 1996, 145:1-13.
[44] Bershaw J, Garzione C, Schoenbohm L, et al.Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China)[J]. Journal of Asian Earth Sciences, 2012, 44:136-148.
[45] Amidon W, Hynek S.Exhumational history of the north central Pamir[J]. Tectonics, 2010, 29:C5015.
[46] Sobel E, Schoenbohm L, Chen J, et al.Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim:Implications for Pamir orogenesis[J]. Earth and Planetary Science Letters, 2011, 304:369-378.
[47] Sobel E, Dumitru T.Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collsion[J]. Journal of Geophysical Research, 1997, 102(B3):5043-5063.
[48] Leith W.A mid-Mesozoic extension across central Asia[J]. Nature, 1985, 313:567-570.
[49] Hubbard M, Grew E, Hodges K, et al.Neogene cooling and exhumation of upper-amphibolite-facies‘whiteschists’in the southwest Pamir Mountains, Tajikistan[J]. Tectonophysics, 1999, 305:325-337.
[50] Liu Sheng, Qiu Bin, Yin Hong, et al.Structural characteristics of Wuboer thrust belts in the foreland of West Kunlun Mountain[J]. Acta Petrolei Sinica, 2005, 26(6):16-19.
[刘胜, 邱斌, 尹宏, 等.西昆仑山前乌泊尔逆冲推覆带构造特征[J]. 石油学报, 2005, 26(6):16-19.]
[51] Arrowsmith J, Strecker M.Seismotectonic range-front segmentation and mountain-belt growth in the Pamir-Alai region, Kyrgyzstan (India-Eurasia collision zone)[J]. GSA Bulletin, 1999, 111(11):1665-1683.
[52] Chen Hanlin, Zhang Fenfen, Cheng Xiaogan, et al.The deformation features and basin-range coupling structure in the northeastern Pamir tectonic belt[J]. Chinese Journal of Geology, 2010, 45(1):102-112.
[陈汉林, 张芬芬, 程晓敢, 等.帕米尔东北缘地区构造变形特征与盆山结构[J]. 地质科学, 2010, 45(1):102-112.]
[53] Chen Jie, Qu Guosheng, Hu Jun, et al.Arcuate thrust tectonics and its contemporary seismicity in the eastern section of the external zone of the Pamir[J]. Seismology and Geology, 1997, 19(4):301-312.
[陈杰, 曲国胜, 胡军, 等.帕米尔北缘弧形推覆构造带东段的基本特征与现代地震活动[J]. 地震地质, 1997, 19(4):301-312.]
[54] Li Tao, Chen Jie, Xiao Weipeng, et al.Using deformation terraces to confine the shortening, uplift and lateral propagation of the Mushi Anticline, northern margin of the Pamir[J]. Seismology and Geology, 2011, 33(2):308-322.
[李涛, 陈杰, 肖伟鹏, 等.利用变形河流阶地限定帕米尔北缘木什背斜的缩短、隆升和侧向扩展[J]. 地震地质, 2011, 33(2):308-322.]
[55] Phillipsa R, Parrish R, Searle M.Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh[J]. Earth and Planetary Science Letters, 2004, 226:305-319.
[56] Valli F, Arnaud N, Leloup P, et al.Twenty million years of continuous deformation along the Karakorum fault, western Tibet:A thermochronological analysis[J]. Tectonics, 2007, 26(4), doi: 10.1029/2005TC001913.
[57] Valli F, Leloup P, Paquette J, et al.New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault[J]. Tectonics, 2008, 27(5), doi: 10.1029/2007TC002184.
[58] Lacassin R, Valli F, Arnaud N, et al.Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet[J]. Earth and Planetary Science Letters, 2004, 219:255-269.
[59] Robinson A. Evidence against Quaternary slip on the northern Karakorum Fault suggests kinematic reorganization at the western end of the Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 2009, 286:158-170.
[60] Liu Dongliang, Li Haibing, Pan Jiawei, et al.Morphotectonic study from the northeastern margin of the Pamir to the West Kunlun range and its tectonic implications[J]. Acta Petrologica Sinica, 2011, 27(11):3 499-3 512.
[刘栋梁, 李海兵, 潘家伟, 等.帕米尔东北缘—西昆仑的构造地貌及其构造意义[J]. 岩石学报, 2011, 27(11):3 499-3 512.]
[61] Avouac J, Peltzer G.Active tectonics in southern Xinjiang, China:Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira Fault system[J]. Journal of Geophysical Research, 1993, 98(B12):21 773-21 807.
[62] Cowgill E, Yin A, Harrison T.Reconstruction of the Altyn Tagh fault based on U-Pb geochronology:Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(B7):2 346.
[63] Peltzer G, Tapponnier P, Armijo R.Magnitude of late Quaternary left lateral displacement along the north edge of Tibet[J]. Science, 1989, 246:1 285-1 289.
[64] Fu Bihong, Zhang Songlin, Xie Xiaoping, et al.Late Quaternary tectono-geomorphic features along the Kangxiwar fault, Altyn Tagh fault system, northern Tibet[J]. Quaternary Sciences, 2006, 26(2):228-235.
[付碧宏, 张松林, 谢小平, 等.阿尔金断裂系西段——康西瓦断裂的晚第四纪构造地貌特征研究[J]. 第四纪研究, 2006, 26(2):228-235.]
[65] Li H, Van der Woerd J, Sun Z, et al.Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet[J]. Gondwana Research, 2012, 21:64-87.
[66] Lin A, Kano K, Guo J, et al.Late Quaternary activity and dextral strike-slip movement on the Karakax Fault Zone, northwest Tibet[J]. Tectonophysics, 2008, 453:44-62.
[67] Thomas J, Chauvin A, Gapais D, et al.Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia)[J]. Journal of Geophysical Research, 1994, 99:15141-15160.
[68] Sobel E, Chen J, Schoenbohm L, et al.Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen[J]. Earth and Planetary Science Letters, 2013, 363:204-218.
[69] Robinson A, Yin A, Manning C, et al.Cenozoic evolution of the eastern Pamir:Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen[J]. GSA Bulletin, 2007, 119(7/8):882-896.
[70] Arnaud N, Brun M, Cantag J, et al.High cooling and denudation rates at Kongur Shan, Eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology[J]. Tectonics, 1993, 12(6):1335-1346.
[71] Robinson A, Yin A, Lovera O.The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems:An application to the Kongur Shan extensional system in the Eastern Pamir, China[J]. Tectonophysics, 2010, 496:28-43.
[72] Ke Shan, Luo Zhaohua, Mo Xuanxue, et al.The geochronology of Taxkorgan alkalic complex, Pamir syntax[J]. Acta Petrologica Sinica, 2008, 24(2):315-324.
[柯珊, 罗照华, 莫宣学, 等.帕米尔构造结塔什库尔干碱性杂岩同位素年代学研究[J]. 岩石学报, 2008, 24(2):315-324.]
[73] Fan G, Ni J, Wallace T.Active tectonics of the Pamirs and Karakorum[J]. Journal of Geophysical Research, 1994, 99:7131-7160.
[74] Tapponnier P, Mattauer M, Proust F, et al.Mesozoic ophiolites, sutures and large-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters, 1981, 52:355-371.
[75] Peltzer G, Tapponnier P.Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision:An experimental approach[J]. Journal of Geophysical Research, 1988, 93:15085-15117.
[76] Yue Y, Ritts B, Graham S.Initiation and long-term slip history of the Altyn Tagh fault[J]. International Geology Review, 2001, 43:1087-1093.
[77] Yue Y, Ritts B, Graham S, et al.Slowing extrusion tectonics:Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault[J]. Earth and Planetary Science Letters, 2003, 217:111-122.
[78] Yue Y, Graham S, Ritts B, et al.Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault[J]. Tectonophysics, 2005, 406:165-178.
[79] Yue Y, Liou J.Two-stage evolution model for the Altyn Tagh fault, China[J]. Geology, 1999, 27(3):227-230.
[80] Murphy M, Yin A, Kapp P, et al.Southward propagation of the Karakoram fault system, southwest Tibet:Timing and magnitude of slip[J]. Geology, 2000, 28(5):451-454.
[81] Zhang Jiasheng, Shan Xinjian, Li Jianhua, et al.Recent deep subducting of continental crust in Pamir:An interpretation on seismotectonics and geodynamics[J]. Acta Petrologica Sinica, 2005, 21(4):1 215-1 227.
[张家声, 单新建, 李建华, 等.帕米尔地区现今大陆深俯冲—地震构造和动力学解释[J]. 岩石学报, 2005, 21(4):1 215-1 227.]
[82] Ratschbacher L, Frisch W, Liu G, et al.Distributed deformation in southern and western Tibet during and after the India-Asian collision[J]. Journal of Geophysical Research, 1994, 99:19 917-19 945.
[83] Bazhenov M, Perroud H, Chauvin A, et al.Paleomagnetism of Cretaceous red beds from Tadzhikistan and Cenozoic deformation due to India-Eurasia collision[J]. Earth and Planetary Science Letters, 1994, 124:1-18.
[84] Bosboom R, Dupont-Nivet G, Huang W, et al.Oligocene clockwise rotations along the eastern Pamir:Tectonic and paleogeographic implications[J]. Tectonics, 2014, 33:53-66.
[85] Bourgeois O, Cobbold P, Rouby D, et al.Least squares restoration of Tertiary thrust sheets in map view, Tajik depression, central Asia[J]. Journal of Geophysical Research, 1997, 102:27 553-27 573.
[86] Chen Y, Cogne J, Courtillot V.New Cretaceous paleomagnetic poles from the Tarim Basin, Northwestern China[J]. Earth and Planetary Science Letters, 1992, 114(1):17-38.
[87] Rumelhart P, Yin A, Cowgill E, et al.Cenozoic vertical-axis rotation of the Altyn Tagh fault system[J]. Geology, 1999, 27(9):819.
[88] Li Z, Ding L, Lippert P, et al.Paleomagnetic constraints on the Cenozoic kinematic evolution of the Pamir plateau from the Western Kunlun Shan foreland[J]. Tectonophysics, 2013, 603:257-271.
[89] Yin A, Robinson A, Manning C.Oroclinal bending and slab-break-off causing coeval east-west extension and east-west contraction in the Pamir-Nanga Parbat syntaxsis in the past 10 m.y[J]. Eos (Transactions, American Geophysical Union), 2001, 82:F1124.
[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[3] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[4] 王汝建, 肖文申, 章陶亮, 聂森艳. 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1236-1244.
[5] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[6] 郑洪波, 郭正堂, 邓涛. 新生代东亚地形、水系与生物地理演变——第三届地球系统科学大会拾翠[J]. 地球科学进展, 2014, 29(11): 1280-1286.
[7] 王斌,郑洪波,王平,何忠. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 2013, 28(10): 1126-1135.
[8] 吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
[9] 丁汝鑫,王利,许长海,周祖翼. 大别造山带与毗邻沉积盆地间剥蚀沉积关系的裂变径迹热史模拟定量对比[J]. 地球科学进展, 2009, 24(8): 942-946.
[10] 田军. 新生代的气候节律:赤道太平洋IODP-320、321航次[J]. 地球科学进展, 2009, 24(12): 1357-1361.
[11] 于革. 早新生代温室气候及冰期气候转型的模拟研究[J]. 地球科学进展, 2007, 22(4): 369-375.
[12] 孙杰,贾建业,詹文欢,易顺民. 深圳断裂带构造活动性分析[J]. 地球科学进展, 2007, 22(3): 234-240.
[13] 王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.
[14] 陈骏,杨杰东,李春雷. 大陆风化与全球气候变化[J]. 地球科学进展, 2001, 16(3): 399-405.
[15] 向芳,王成善. 质量平衡法——定量恢复新生代青藏高原造山作用[J]. 地球科学进展, 2001, 16(2): 279-283.
阅读次数
全文


摘要