地球科学进展 ›› 2001, Vol. 16 ›› Issue (3): 399 -405. doi: 10.11867/j.issn.1001-8166.2001.03.0399

全球变化研究 上一篇    下一篇

大陆风化与全球气候变化
陈骏 1,杨杰东 1,2,李春雷 1
  
  1. 1.南京大学地球科学系,表生地球化学研究所,成矿机制国家重点实验室,江苏 南京  210093;
    2.南京大学现代分析中心,江苏 南京  210093
  • 收稿日期:2000-10-08 修回日期:2000-11-30 出版日期:2001-06-01
  • 通讯作者: 陈骏(1954-),男,江苏省扬州市人,教授,现主要从事环境地球化学研究. E-mail:chenjun@nju.edu.cn
  • 基金资助:

    国家杰出青年科学基金项目“黄土化学风化过程与层圈相互作用”(编号:49725307);国家自然科学基金项目“隐生宙向显生宙过渡期间海洋Nd、Sr同位素演变及其意义”(编号:49873004)联合资助.

THE CONTINENTAL WEATHERING AND THE GLOBAL CLIMATIC CHANGE

CHEN Jun 1,YANG Jiedong 1,2,LI Chunlei 1
  

  1. 1.Department of Earth Sciences,State Key Laboratory of Mineralizing Processes of Ore Deposits,Nanjing University,Nanjing210093,China;
    2.Center of Modern Analysis,Nanjing University,Nanjing210093,China
  • Received:2000-10-08 Revised:2000-11-30 Online:2001-06-01 Published:2001-06-01

“构造隆升驱动气候变化”的假说是当前解释新生代以来全球气候变冷的主流观点。该假说把新生代以来发生的几个主要现象,即全球气候总体上趋冷,大气CO2浓度下降,海洋87Sr/86Sr比值上升,以及构造作用引起的大面积隆升等加以有机的联系,给以了合理的解释。近几年围绕大陆风化和全球气候变化问题取得了一些新的进展,主要是对发源于喜马拉雅山的河流进行研究,探讨青藏高原隆起对于大陆风化速率的影响。这些争论主要是有关硅酸盐风化还是碳酸盐风化,有机碳的风化与埋藏,大陆风化与大气温度,大气CO2浓度与大气温度等问题。最后介绍了我国研究人员在黄土高原的黄土沉积地层所作的研究工作和取得的成果。

 The paper introduces the dominant opinion interpreting the cooling of the global climate since the Cenozoic—the hypothesis of “the climatic change driven by tectonic lift”. The main events since the Cenozoic include: (1) cooling of the global climate;(2) decrease of concentration of the atmospheric CO2;(3) ascent of the marine 87Sr/ 86Sr, and (4) lift of a large areas driven by tectonics. The four events and the connection between them are explained reasonably by the above hypothesis. The paper also introduces the recent advances in researches on the continental weathering and the global climatic change, and the controversies about silicate or carbonate weathering, weathering and burying of organic carbon, the continental weathering and temperature, concentration of the atmospheric CO2 and temperature. For the above questions, the results in the Loess Plateau derived by the Chinese researches are introduced also.

中图分类号: 

[1]  Raymo M E, Ruddiman W F.Tectonic forcing of late Cenozoic climate[J].Nature, 1992, 359:117-122.
[2]  Mack G H, Cole D R,et al.Stable oxygen and carbon isotopes of pedogenic carbonate as indicators of Plio-Peistocene paleoclimate in the southern Riogrande rift, south-central new Mexico[J].American Journal of Science, 1994, 294:621-640.
[3]  Crowley T J, Mengel J G, Short D A.Gondwanaland' s seasonal cycle[J]. Nature, 1987, 329:803-807.
[4]  Broecker W S.Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2upset the current balance? [J].Science,1997, 278:1 582-1 588.
[5]  Richter F M, Rowley D B, DePaolo D J.Sr isotope evolution of seawater: the role of tectonics[J].Earth Planet Sci Lett,1992, 109:11-23.
[6]  Palmer M R, Edmond J M.The strontium isotope budget of the modern ocean[J]. Earth Planet Sci Lett, 1989, 92:11-26.
[7]  Holland H D.The Chemical Evolution of the Atmosphere and Ocean[M].Princeton: Princeton University Press, 1984.
[8]  Copeland P, Harrison T M.Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan[J].Geology, 1990, 18:354-357.
[9]  Berner R A, Lasaga A C, Garrels R M.The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over tha past 100 million years[J].Am J Sci, 1983, 283:641-683.
[10]  Berner R A.A model for atmospheric CO2 over Phanerozoic time[J].Am J Sci, 1991, 291:339-376.
[11]  Walker J C G, Hays P B, Kasting J F.A negative feedback mechanism for the long-term stabilization of the Earth' s surface temperature[J].J Geophys Res, 1981, 86:9 776-9 782.
[12]  Berner R A.Atmospheric carbon dioxide level over Pherozoic time[J].Science, 1990, 249:1 382-1 386.
[13]  Raymo M E, Ruddiman W F, Froelich P N.Influence of late Cenozoic mountain building on ocean geochemical cycles[J].Geology, 1988, 16:649-653.
[14]  Raymo M E.Geochemical evidence supporting T.C.Chamberlin' s theory of glaciation[J].Geology, 1991, 19:344-347.
[15]  Li Chunlei, Chen Jun, Ji Junfeng.Uplift of the Qingzang Plateau and evolution of the marine Sr isotopic composition[J].Advance in Earth Sciences, 1999, 14:582-588.[李春雷,陈骏,季峻峰.青藏高原的隆起与海洋锶同位素组成的演化[J].地球科学进展,1999,14:582-588.]
[16]  Derry L, France-Lanord A C.Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record[J].Earth and Planetary Science Letters, 1996, 142:59-74.
[17]  Edmond J M.Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones[J].Science, 1992, 258:1 594-1 597.
[18]  Singh S K, Trivedi J R, Pande K,et al.Chemical and Sr, O,C, isotopic compositions of carbonates from the Lesser Himalaya: Implications to the Sr isotope composition of the source waters of the ganges, Ghaghara and the Indus Rivers[J].Geochim Cosmochim Acta,1998, 62:743-755.
[19]  Galy A, France-Lanord C, Derry L A.The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh[J].Geochim Cosmochim Acta,1999, 63:1 905-1 925.
[20]  Palmer M R, Edmond J M.Controls over the strontium isotope composition of river water[J].Geochim Cosmochim Acta,1992, 56:2 099-2 111.
[21]  Quade J, Roe L, DeCelles P G,et al.The late Neogene 87Sr/86Sr record of lowland Himalayan rivers[J].Science,1997, 276:1 828-1 831.
[22]  Blum J D, Gazis C A, Jacobsen A D,et al.Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series[J]. Geology, 1998, 26: 411-414.
[23]  France-Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion [J]. Nature,1997, 390(6);65-67.
[24]  Kuypers M M M, Pancost R D, DamstéJ S S.A large and abrupt fall in atmospheric CO2 concentration during Cretaceous time[J].Nature, 1999, 399:342-345.
[25]  Blum J D, Erel Y, Brown K.87Sr/86Sr ratios of Sierra Nevada stream waters: Implication for relative mineral weathering rates[J].Geochimica et Cosmichimica Acta, 1994, 58:5 019-5 025.
[26]  Blum J D, Erel Y.A silicate weathering mechanism linking increases in marine with global glaciation[J].Nature, 1995,373(2):415-418.
[27]  Kerr R A.Slide into ice ages not carbon dioxide' s fault? [J].Science, 1999, 284:1 743-1 746.
[28]  Pearson P N, Palmer M R.Atmospheric carbon dioxide concentrations over the past 60 million years[J].Nature, 2000,406: 695-699.
[29]  Pagani M, Arthur M A, Freeman K H.Miocene evolution of atmospheric carbon dioxide[J].Paleoceanography, 1999, 14:273-292.
[30]  Pearson P N, Palmer M R.Middle Eocene seawater pH and atmospheric carbon dioxide concentrations [ J ]. Science,1999, 284:1 824-1 826.
[31]  Wu Xihao, An Zhisheng. The loess-paleosol sequences of the Chinese Loess Plateau and uplift of the Qingzang Plateau[J].Science in China(Series D), 1996, 26:103-110.[吴锡浩,安芷生.黄土高原黄土—古土壤序列与青藏高原隆起[J].中国科学(D辑),1996,26:103-110.]
[32]  An Zhisheng, Wang Sumin, Wu Xihao,et al.The aerial evidences of the Chinese Loess Plateau-begin of the large ice ages in the north hemisphere during the late Cenozoic and uplift driving of the Qingzang Plateau[J].Science in China(Series D), 1998, 28:481-490.[安芷生,王苏民,吴锡浩,等.中国黄土高原的风积证据——晚新生代北半球大冰期开始及青藏高原的隆升驱动[J].中国科学(D辑),1998,28:481-490.]
[33]  Li Jijun, Fang Xiaomin.Study on uplift of the Qingzang Plateau and environmental change[J].Chinese Science Bulletin,1998, 43:1 569-1 574.[李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1998,43:1 569-1 574.]
[34]  Ding Z L, Xiong S F, Sun J M,et al.Paleostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and theimplications for paleomonsoon evolution [J]. Palaeogeography.Palaeoclimatology. Palaeoecology,1999,152:49-66.
[35]  Liu Dongsheng, Zheng Mianping, Guo Zhengtang.Origin and development of the Asia monsoon system and time coupling of two polarities and areal tectonic movement[J].Quarternary Research,1998, (3):194-203.[刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J].第四纪研究,1998,(3):194-203.]
[36]  Chen Jun, Ji Junfeng, Qiu Gang,et al.Study on geochemistry of the chemical weathering extent of the Luochuan loess in Shanxi[J].Science in China(Series D), 1997, 27:531-536.[陈骏,季峻峰,仇纲,等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑),1997,27:531-536.]
[37]  Gu Z Y, Lal D, Liu T S,et al.Weathering history of Chinese loess deposits based on U-Th series nuclides and cosmogenic 10Be[J].Geochim Cosmochim Acta,1997,61:5 221-5 231.
[38]  Han J, Fyfe W S, Longstaff F J.Climatic implications of the S5 paleosol complex on the southernmost Chinese Loess  Plateau[J].Quaternary Research,1998, 50:21-33.
[39]Liu Congqiang, Zhang Jin, Li Chunlai.Concentration of CaCO3 in loess and record of paleoclimate fluctuation[J].Chinese Science Bulletin,1999, 44:1 088-1 092.[刘丛强,张劲,李春来.黄土中CaCO3含量及其Sr同位素组成变化与古气候波动记录[J].科学通报,1999,44:1 088-1 092.]
[40]  Yang Jiedong,Chen Jun,An Zhisheng,et al.Variation in 87Sr/86Sr ratios of calcites in Chinese loess: A proxy for chemical weathering associated with the East Asian summer monsoon[J]. Palaeogeography Palaeoclimatology Palaeoecology,2000,157:151-159.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[6] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[7] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[8] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[11] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[12] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[13] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
阅读次数
全文


摘要