地球科学进展 ›› 2007, Vol. 22 ›› Issue (4): 369 -375. doi: 10.11867/j.issn.1001-8166.2007.04.0369

综述与评述 上一篇    下一篇

早新生代温室气候及冰期气候转型的模拟研究
于革   
  1. 中国科学院南京地理与湖泊研究所,江苏 南京 210008
  • 收稿日期:2006-10-10 修回日期:2007-01-17 出版日期:2007-04-10
  • 通讯作者: 于革(1957-),女,江苏南京人,研究员,主要从事古气候环境和古气候模拟研究.E-mail: geyu@niglas.ac.cn E-mail:geyu@niglas.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“中国北方中纬度地区深海氧同位素第3期的环境演化特征”(编号:90411017)资助.

Reviews of Modelings of Green-house Climate and Ice-age Transformation in the Early Cenozoic

YU Ge   

  1. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
  • Received:2006-10-10 Revised:2007-01-17 Online:2007-04-10 Published:2007-04-10

早新生代是地质史上最后一个温室气候期,随后南极冰盖形成,地球进入到晚新生代冰期。温室气候的成因和冰期气候转型的机制一直是国际相关学界关注的问题。评述国际上对此开展的古气候模拟,反映了早新生代温室气候受到了海洋和大陆的地理位置、暖海洋温盐环流和海洋热输送、太阳辐射和大气CO2浓度变化的作用和影响。古气候模拟还反映了早新生代温室气候转向冰期气候,受到了大洋通道改变和高原构造隆起、大气成分变化以及海陆生态系相互的作用和反馈。这些古气候模拟试验锁定在气候变化的关键时段和重要驱动因子,对测试地球内外驱动力和地球各圈层反馈作用提供了重要的科学依据;温室气候以及趋向冰期气候的模拟研究对探讨气候变化内在机制、预测未来气候具有重要意义。

Early Cenozoic is the last green-house climate in geological history. With development of Antarctic ice-sheet, the Earth entered a glacial period of Late Cenozoic Ice Age. The causes of green-house climate and the transition to ice age have become an important issue in international paleoclimate modeling community. This paper reviews a series of Early Cenozoic climate simulations, discusses the climate model's developing, the boundary conditions and the experiment designs, and analyzes the impacts and feedbacks of atmospheric green-house gas, topography, oceans and terrestrial ecosystem on Early Cenozoic climate system. These modelingsfocused on the major factors of Early Cenozoic climate changes and tested the inner and external forcing in the Earth climate system, which provided us an understanding of the mechanisms in warm climate change and an important scientific basis for predicting the future climate changes.

中图分类号: 

[1]Crowley T J, North G R. Paleoclimatology[M]. Oxford: Oxford University Press,1991.
[2]Frakes L A. Climates Throughout Geologic Times[M]. Amsterdam: Elsevier,1979.
[3]Barron E J. Explanations of the Tertiary global cooling trend[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1985,50: 45-62.
[4]Crowley T J. Modeling pliocene warmth[J].Quaternary Science Reviews,1991, 10: 275-282.
[5]Wolfe J A. Tertiary climates and floristic relationships at high latitudes in the northern hemisphere[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1980,30: 313-323.
[6]Hickey L J, West R M, Dawson M R, et al. Arctic terrestrial biota: Paleomagnetic evidence of age disparity with mid-northern latitudes during the late Cretaceous and early Tertiary[J]. Science,1983,221: 1 153-1 156.
[7]Barron E J, Washington W M. Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism[C]//Sundquist E T, Broecker W S, eds.The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: American Geophysical Union, 1985:546-553.
[8]Wing S L, Gingerich P D, Schmitz B, et al. Causes and consequences of globally warm climates in the early Paleogene[Z]. Boulder Colorado: Geological Society of America Special Paper 369,2003. 
[9]Nunes F, Norris R D. High-resolution stable isotope records across the Paleocene/Eocene boundary, ODP Sites 1220 and 1221[R]. Reports of the Ocean Drilling Program, Scientific Results, 199 MS number 199SR-206,2005.
[10]Kennett J P,Stott L D. Abrupt deep sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene[J]. Nature,1991,353: 319-322.
[11]Pearson P N, Palmer M R. Middle eocene seawater pH and atmospheric carbon dioxide cconcentrations[J]. Science,1999,284:1 824-1 826.
[12]Quilllévéré F, Norris R D. Ecological development of acarininids (planktonic foraminifera) and hydrographic evolution of Paleocene surface waters[C]//Wing S L, Gingerich P D, Schmitz B, eds. Causes and Consequences of Globally Warm Climates in the Early Paleogene. Boulder Colorado: Geological Society of America Special Paper 369,2003:223-238.
[13]Bellanca A, Masetti D, Neri R,et al. Geochemical and sedimentological evidence of productivity cycles recorded in Toarcian black shales from the Belluno Basin, Southern Alps, northern Italy[J]. Journal of Sedimentary Research,1999,69B: 466-476.
[14]Bains S, Norris R D, Corfield R M, et al.Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback[J].Nature,2000, 407: 171-174.
[15]Ravizza G, Norris R D, Blusztajn J, et al. An osmium isotope excursion associated with the late Paleocene thermal maximum (LPTM): Evidence of intensified chemical weathering[J]. Paleoceanography,2001,16: 155-163.
[16]Katz M E, Pak D K, Dickens G R,et al. The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum[J]. Science,1999,286:1 531-1 533.
[17]Dickens G R.Methane oxidation during the Late Palaeocene Thermal Maximum[J]. Bulletin de la Société Géologique de France,2000,171: 37-49.
[18]Beerling D J. Increased terrestrial carbon storage across the Palaeocene-Eocene boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000, 161: 396-400.
[19]Norris R D, Nishi H. Evolution of iterative trends in coiling of Paleocene-Eocene tropical planktic foraminifera[J].Paleobiology,2001,27(2):327-347.
[20]Schlesinger M E . Physically-Based Modelling and Simulation of Climate and Climatic Change[M]. Dordrecht: Kluwer, 1988.
[21]Bains S, Corfield R M, Norris R D. Mechanism of climatic warming at the end of the Paleocene[J]. Science,1999,285:724-727.
[22]Saltzman B. Dynamical Paleoclimatology: Generalized Theory of Global Climate Change[M]. San Diego: Academic Press, 2002.
[23]Lawrence K T, Sloan L C, Sewall J O. Terrestrial climatic response to precessional orbital forcing in the Eocene[C]//Wing S L, Gingerich P D, Schmitz B, et al.Causes and Consequences of Globally Warm Climates in the Early Paleogene. Boulder Colorado:Geological Society of America Special Paper 369, 2003:65-77.
[24]DeConto R M, Thompson S L,Pollard D. Recent advances in paleoclimate modeling: Toward better simulations of warm paleoclimates[C]//Huber B T, MacLeod K G, Wing S L, eds. Warm climates in Earth History. Cambridge: Cambridge University Press,2000:21-49.
[25]Huber M, Sloan L C, Shellito C. Early Paleogene oceans and climate: A fully coupled modeling approach using the NCAR CCSM[C]//Wing S L, Gingerich P D, Schmitz B,eds. Causes and Consequences of Globally Warm Climates in the Early Paleogene. Boulder Colorado: Geological Society of America Special Paper,2003,369:25-47.
[26]Hyde W T, Kim K-Y, Crowley T J, et al. On the relation between polar continentality and climate: Studies with a nonlinear energy balance model[J].Journal of Geophysical Research,1990,95:18 653-18 668.
[27]Maier-Reimer E, Mikolajewicz U, Crowley T J. Ocean GCM sensitivity experiment with and open central American isthmus[J].Paleoceanography,1990,5: 349-366.
[28]Oglesby R J. A GCM study of Antarctic glaciation[J].Climate Dynamics,1989,3:135-156.
[29]Huber M, Nof D.The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2006,231:9-28.
[30]Sloan L C, Rea D K. Atmospheric carbon dioxide and early Eocene climate: A general circulation modeling sensitivity study[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1995,119: 275-295.
[31]Berger A L.Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences,1978,35: 2 362-2 367.
[32]Berggren W A. Role of ocean gateways in climatic change[C]//Berger H C,Crowell J C,eds. Climate of Earth History. Washington DC: National Academy Press, 1982:118-125.
[33]Nunes F, Norris R D. Abrupt reversal ocean overturning during the Palaeocene-Eocene warm period[J].Nature,2006,439: 60-64.
[34]Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southeast Asia and the American southwest[J].Journal of Geophysical Research,1989,94:18 409-18 427.
[35]Kohfeld K E, Harrison S P.How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets[J].Quaternary Science Reviews,1999,19:321-436.

[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[3] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[4] 刘纪远,邵全琴, 延晓冬, 樊江文, 邓祥征, 战金艳, 高学杰, 黄麟, 徐新良, 胡云峰, 王军邦, 匡文慧. 土地利用变化对全球气候影响的研究进展与方法初探[J]. 地球科学进展, 2011, 26(10): 1015-1022.
[5] 邵景安,李阳兵,魏朝富,谢德体. 区域土地利用变化驱动力研究前景展望[J]. 地球科学进展, 2007, 22(8): 798-809.
[6] 王成善. 白垩纪地球表层系统重大地质事件与温室气候变化研究[J]. 地球科学进展, 2006, 21(8): 838-842.
[7] 宋治清;王仰麟. 城市景观格局动态及其规划的生态学探讨[J]. 地球科学进展, 2005, 20(8): 840-848.
[8] 高洪林,穆治国,马配学. 古气候变化的周期性与驱动机制研究的回顾[J]. 地球科学进展, 2000, 15(2): 222-227.
[9] 方文东,方国洪. 南海南部海洋环流研究的新进展[J]. 地球科学进展, 1998, 13(2): 166-172.
[10] 蒋兆理,刘晓东. 气候模式与古气候研究[J]. 地球科学进展, 1991, 6(2): 19-24.
阅读次数
全文


摘要