地球科学进展 ›› 2006, Vol. 21 ›› Issue (8): 838 -842. doi: 10.11867/j.issn.1001-8166.2006.08.0838

学科发展与研究 上一篇    下一篇

白垩纪地球表层系统重大地质事件与温室气候变化研究
王成善   
  1. 中国地质大学地球科学与资源学院,青藏高原地质研究中心,北京 100083
  • 收稿日期:2006-01-24 修回日期:2006-05-15 出版日期:2006-08-15
  • 通讯作者: 王成善 E-mail:chshwang@cugb.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“白垩纪地球表层系统重大地质事件与温室气候变化”(编号:2006CB701400)资助.

Coupling of the Earth Surface System: Inferring from the Cretaceous Major Geological Events

Wang Chengshan   

  1. Research Center of Tibetan Plateau Geology, China University of Geociences, Beijing 100083,China
  • Received:2006-01-24 Revised:2006-05-15 Online:2006-08-15 Published:2006-08-15

国家重点基础研究发展计划(973)项目“白垩纪地球表层系统重大地质事件与温室气候变化”,将以白垩纪与碳循环相关的重大地质事件和温室气候变化的关系为主线,以大洋缺氧事件—富氧作用转变过程和机制研究为突破口,进行海陆相整合研究,重点追溯东特提斯洋和我国大陆地球表层系统重大地质事件的记录,探讨这些事件与碳循环、快速气候变化的正/负反馈机制。项目将充分利用中国大陆发育完好的白垩纪海相、陆相地层及古生物记录,通过松辽盆地白垩系科学钻探全岩芯取样和多学科综合研究的途径,着眼于厘定反映地质事件和气候变化的层位及标志和时间格架,解决高分辨率海、陆相沉积事件的精确对比,分析地层记录中气候标志和古生物类群的地理分布,集中研究陆地和海洋环境对同一事件的响应机制,重溯白垩纪地球表层系统重大地质事件过程及成因,探究陆相烃源岩大规模形成、陆地生物群更替与温室气候变化和碳循环之间的正/负反馈关系和机制等科学问题,为预测全球长时间尺度上的气候变化趋势提供科学依据。

With the relationship of major geological events related to the carbon cycle and greenhouse climate change as the critical scientific issue, and with transitional process and mechanism from OAE to enhanced oxic effect as the breakthrough point, in our project, we conduct an ocean-land combination research, put emphasis on ascending the major geological events records of Cretaceous Earth Surface System in eastern Tethys ocean and mainland of China, and explore the positive and negative feedbacks among geological events, carbon cycle and rapid climate change. The project will make full use of Cretaceous marine, terrestrial strata and paleontological records. A scientific drilling core will be conducted in the Songliao basin with about 2000 m in depth full core recovery. This will allow high precision resolution in the correlation of marine and ocean events and facilitate our understanding of environmental and paleoclimatic controls on the geographical distribution of biota. Continental and oceanic response to the same event will be studied to re-construct the processes and reasons of major geological events in the Cretaceous earth surface system, and to explore the mechanisms among genesis of large terrestrial hydrocarbon source rock, terrestrial biota radiation and evolution, greenhouse climate change, carbon cycle, which will give scientific evidences for predicting future trends of long time scale climate change.

中图分类号: 

[1] Broecker W S. Will our ride into the greenhouse future be a smooth one? [J]. GSA Today,1997, 7:1-6.

[2] Miller K G, Wight J K, Fairbanks R D. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. Journal of Geophysical Research,1991, 96:6 829-6 848.

[3] Wang Pinxian. Deep sea research and Earth sciences in new century[C]Lu Yongxiang, ed. Overwiew and Perspective of Sciences and Technology in Past 100 Years. Shanghai: Shanghai Education Press, 2000:191-211.[汪品先.深海研究和新世纪的地球科学[C]路甬祥主编.百年科技回顾与展望——中外著名学者学术报告. 上海:上海教育出版社, 2000:191-211.]

[4] Hay W W, Deconto R M. Comparison of modern and late Cretaceous meridional energy transport and oceanology [C]Barrera E, Johnson C C, ed. Evolution of the Cretaceous Ocean-Climate System. Geological Society American Special Paper,1999,332:283-300.

[5] Hay W W, DeConto R M, Wold C N. Climate: Is the past the key to future?[J]. Geologische Rundschau,1997,86:471-491.

[6] Tarduno J, Brinkman D B, Renne P R, et al. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates[J]. Science,1998,282:2 241-2 244.

[7] Peter W Skeleton, Robert A Spicer, Simon P Kelley, et al. The Cretaceous World[M]. Cambridge: Cambridge University Press,2003: 360.

[8] Larson R L. Latest pulse of Earth: Evidence for a mid Cretaceous superplume[J]. Geology,1991,19:963-966.

[9] Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science,2001,301:112-149.

[10] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Cause and consequence[J]. Geologie en Mijinbouw,1976,55:179-184.

[11] Jenkyns H C. Cretaceous anoxic events: From continents to oceans[J]. Journal of the Geological Society London,1980, 137:171-188.

[12] Bralower T J, Srthur M A, Leckie R M, et al. Timing and paleoceanography of oceanic dysoxia/anoxic in the late Barremian to Early Aptian[J]. Palaios,1994,9:335-369.

[13] Xiumian Hu, Luba Jansa, Chengshan Wang, et al. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: Occurrences, lithofacies, age and environments[J]. Cretaceous Research,2005,26: 3-20.

[14] Chengshan Wang, Xiumian Hu, Massimo Sarti, et al. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep-sea environments[J]. Cretaceous Research, 2005, 26: 21-32.

[15] Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankon evolution: Biotic response to tectonic forcing during the mid-Cretaceous [J]. Paleoceanography,2002,17(3):10.1029/2001PA000623.

[16] Helsley C E, Steniner M B. Evidence for long intervals of normal polarity during the Cretaceous period [J]. Earth and Planetary Science Letters,1969,5:325-332.

[17] Cronin M, Tauxe L, Constable C, et al. Noise in the quite zone[J]. Earth and Planetary Science Letters, 2001, 190:13-30.

[18] Shi Ruiping, Zhu Rixiang. Possible links beween abnormal geological events and geodynamics during Cretaceous[J]. Progress in Geophysics, 2002,17(2): 295-300. [史瑞萍,朱日祥. 白垩纪地球物理场异常与地球深部动力学[J]. 地球物理学进展,2002,17(2): 295-300.]

[19] Zhao Xixi. The Earth’s magnetic field and global geologic phenomena in Mid-Cretaceous [J]. Earth Science Frontiers, 2005,12(2):199-216.

[20] Walliser O H. Global Events and Events Stratigraphy in the Phanerozoic [M]. Berlin Heidelberg: Springer-verlag, 1996:242-252.

[21] Ma Zongjin, Du Pinren, Lu Miaoan. Multi-layered Interaction of the Earth [J]. Earth Science Frontiers, 2001,8(1):3-8. [马宗晋,杜品仁,卢苗安. 地球多圈层的相互作用[J].地学前缘,2001,8(1):3-8.]

[22] Schlanger S O, Arthur M A, Jenkyns H C, et al. The Cenomanian-Turonian oceanic anoxic event, I. stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion[C]Brooks J, Fleet A J, eds. Marine Petroleum Source Rocks. Geological Society Special Publication,1987,26:371-399.

[23] Wang Chengshan,Hu Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005,12(2):11-21.[王成善,胡修棉.白垩纪世界与大洋红层[J].地学前缘,2005,12(2):11-21.]

[1] 倪师军,徐争启,张成江,宋 昊,罗 超. 西南地区黑色岩系铀成矿作用及成因模式探讨[J]. 地球科学进展, 2012, 27(10): 1035-1042.
[2] 于革. 早新生代温室气候及冰期气候转型的模拟研究[J]. 地球科学进展, 2007, 22(4): 369-375.
[3] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 2003, 18(5): 681-690.
[4] 史斗,刘文汇,郑军卫. 深层气理论分析和深层气潜势研究[J]. 地球科学进展, 2003, 18(2): 236-244.
[5] 彭澎,翟明国. 华北陆块前寒武纪两次重大地质事件的特征和性质[J]. 地球科学进展, 2002, 17(6): 818-825.
[6] 赵文金,万晓樵. 藏南定日地区白垩纪中期地球化学异常对海平面上升的响应[J]. 地球科学进展, 2002, 17(3): 331-338.
[7] 吴智勇;姜衍文;郑秀才. 天文地质学的发展与展望[J]. 地球科学进展, 1996, 11(1): 13-18.
[8] 仪垂祥. 应用非线性科学方法建立环境与生态综合理论体系的探讨[J]. 地球科学进展, 1995, 10(2): 164-168.
[9] 张昀. 新地球观[J]. 地球科学进展, 1992, 7(1): 57-.
[10] 邱道特. 地球表层辐射平衡质疑[J]. 地球科学进展, 1990, 5(1): 48-53.
阅读次数
全文


摘要