地球科学进展 ›› 2013, Vol. 28 ›› Issue (9): 1049 -1056. doi: 10.11867/j.issn.1001-8166.2013.09.1049

研究简报 上一篇    下一篇

崔豪 1,周炼 2,李超 1*,彭兴芳 1,金承胜 1,石炜 1,张子虎 1,罗根明 1,谢树成 1   
  1. 1.中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074;2.中国地质大学(武汉)地质过程与矿产资源国家重点实验室,湖北 武汉 430074
  • 收稿日期:2013-04-14 修回日期:2013-07-08 出版日期:2013-09-10
  • 通讯作者: 李超(1974-),男,河南虞城人,教授,主要从事古代与现代海洋生物地球化学研究.E-mail:chaoli@cug.edu.cn E-mail:李超chaoli@cug.edu.cn
  • 基金资助:

    国家重大科学研究计划项目“古海洋MCP储碳的生物地球化学过程机制及MCP定量模型预测”(编号: 2013CB955704);教育部新世纪优秀人才支持计划项目“华北燕山盆地早中元古代古海洋化学时空演化及其对早期真核生命演化的影响”(编号:NCET-11-0724) 资助.

Iron-Molybdenum Isotopes and the Chemical Evolution of Ancient-Oceans

Cui Hao 1,Zhou Lian 2,Li Chao 1,Peng Xingfang 1,Jin Chengsheng 1,Shi Wei 1,Zhang Zihu 1,Luo Genming 1,Xie Shucheng 1   

  1. 1.State Key Laboratory of Biological and Environmental Geology, China University of Geosciences, Wuhan 430074, China;2.State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
  • Received:2013-04-14 Revised:2013-07-08 Online:2013-09-10 Published:2013-09-10

Fe元素在自然界储量丰富,而Mo元素则是海水中储量最丰富的过渡金属元素。由于Fe,Mo对其所在环境的氧化还原条件非常敏感,近年来随着分析技术的进步,Fe与Mo同位素组成和变化被广泛用于鉴别古代海洋氧化还原状态及其演化。系统总结了古海洋化学研究中Fe与Mo同位素分馏机理和自然分布,并对当前获得的Fe-Mo同位素地史记录及其所指示的古海洋氧化还原状态进行了归纳与部分解释。造成Fe同位素分馏最明显的过程是氧化还原反应,氧化态的Fe通常具有更重的Fe同位素组成;此外,微生物作用及非生物作用下的黄铁矿生成过程也会产生明显的Fe同位素分馏。在海洋环境中Mo同位素的分馏主要与沉积物中铁锰(氢)氧化物吸附过程有关,铁锰(氢)氧化物吸附Mo的过程中,铁锰(氢)氧化物中倾向富集同位素较轻的Mo,造成海水中Mo同位素偏重,而硫化环境下的Mo沉积几乎不造成Mo同位素的分馏。Fe-Mo同位素的地史记录很好地说明了地质历史各时期海洋的氧化还原状态,在2.3 Ga以前海洋主要为铁化的状态,其中在2.6~2.5 Ga时氧含量略有增加;2.3~1.8 Ga之间地球表面初步氧化,硫化物沉积增加;1.8~0.8 Ga时海洋中的硫化环境得到了扩张;0.8 Ga以后地球表层逐步氧化,硫化水体消退。最后,对古海洋化学研究中Fe-Mo同位素研究未来的工作重点给予了展望。

Iron(Fe) is abundant in nature while molybdenum(Mo) is the most abundant transition metal in seawater. Due to their high sensitivity to the redox state of the environment, the isotopic compositions of Fe and Mo as well as variations have been widely used to probe the redox conditions and the evolution of ancient ocean chemistry in favor of improved analytical techniques. Here, we summarized isotopic fractionation mechanisms and natural distribution of both iron and molybdenum isotopes, and further we summarized and partially reinterpreted the redox evolution of ancient oceans through time based on available Fe-Mo data compiled in this study. The process that causes the largest iron isotope fractionation is redox reaction and the iron in oxidation state is generally enriched in 56Fe. Biotic and abiotic pyrite formations also produce a large Fe isotope fractionations. Isotopic fractionation of molybdenum in seawater is mainly caused by the adsorption process of dissolved Mo onto ferromanganese oxides or hydroxides in sediments. Fe-Mn (hydro)oxides tend to adsorb isotopically light molybdenum resulting in the isotopic composition of Mo in seawater heavier. However, the Mo sinks in euxinic settings cause almost no molybdenum isotope fractionation. The FeMo isotope isotopic records through geological timegenerally suggest similar ocean redox evolution: Oceans older than 2.3 Ga was mainly dominated by ferruginous condition, and there was a slight increase in oxygen content between 2.6 and 2.5 Ga. Earth’s surface was initially oxidized during 2.3 to 1.8 Ga, during which euxinic deposition of sulfide was elevated. Euxinic waters may have expanded greatly between 1.8 and 0.8 Ga, and after that, Earth’s surface had being gradually oxidized and the euxinic waters shrank substantially.Finally, suggestions are proposed for further work on the Fe-Mo isotope research in the context of ancient ocean chemistry.


[1]Anbar A, Knoll A. Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science,2002, 297(5 584): 1 137-1 142.

[2]Fike D, Grotzinger J, Pratt L, et al. Oxidation of the ediacaran ocean[J]. Nature, 2006, 444(7 120): 744-747.

[3]Li C, Love G, Lyons T,et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5 974): 80-83.

[4]Lyons T, Anbar A, Severmann S, et al. Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 507-534.

[5]Johnson C, Brian L. Biogeochemical cycling of iron isotopes[J]. Science, 2005, 309(5 737): 1 025-1 027.

[6]Albarède F. The stable isotope geochemistry of copper and zinc[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 409-427.

[7]Arnold G, Weyer S, Anbar A. Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS[J]. Analytical Chemistry, 2004, 76(2): 322-327.

[8]Weyer S, Schwieters J. High precision Fe isotope measurements with high mass resolution MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2003, 226: 355-368.

[9]Beard B, Johnson C. Fe isotope variations in the modern and ancient Earth and other planetary bodies[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 319-357.

[10]Johnson C, Beard B, Roden E, et al. Isotopic constraints on biogeochemical cycling of Fe[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 359-408.

[11]Arnold G, Anbar A, Barber T, et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans[J]. Science, 2004, 304(5 667): 87-90.

[12]Johnson C, Beard B, Roden E. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 457-493.

[13]Beard B, Johnson C M, Von Damm K, et al. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 2003, 31(7): 629-632.

[14]Levasseur S, Frank M, Hein J, et al. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: Implications for seawater chemistry?[J]. Earth and Planetary Science Letters, 2004, 224: 91-105.

[15]Bullen T, White A, Childs C, et al. Demonstration of significant abiotic iron isotope fractionation in nature[J]. Geology, 2001, 29(8): 699-702.

[16]Croal L, Johnson C, Beard B, et al. Iron isotope fractionation by Fe(II)-oxidizing photoautotropic bacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68: 1 227-1 242.

[17]Icopini G, Anbar A, Ruebush S, et al. Iron isotope fractionation during microbial reduction of iron: The importance of adsorption[J]. Geology, 2004, 32(3): 205-208.

[18]Beard B, Johnson C, Cox L, et al. Iron isotope biosignatures[J]. Science, 1999, 285(5 435): 1 889-1 892.

[19]Crosby H, Johnson C, Roden E, et al. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction[J]. Environmental Science and Technology, 2005, 39(17): 6 698-6 704.

[20]Johnson C, Roden E, Welch S, et al. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction[J]. Geochimica et Cosmochimica Acta, 2005, 69: 963-993.

[21]Butler I, Archer C, Vance D, et al. Fe isotope fractionation on FeS formation in ambient aqueous solution[J]. Earth and Planetary Science Letters, 2005, 236: 430-442.

[22]Guilbaud R, Butler I, Ellam R. Abiotic pyrite formation produces a large Fe isotope fractionation[J]. Science, 2011, 332(6 037): 1 548-1 551.

[23]Rouxel O, Bekker A, Edwards K. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state[J]. Science, 2005, 307(5 712): 1 088-1 091.

[24]Rouxel O, Fouquet Y, Ludden J. Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and iron isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68: 2 295-2 311.

[25]Skulan J, Beard B, Johnson C. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe ( III) and hematite[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2 995-3 015.

[26]Matthews A, Morgans-Bell H, Emmanuel S, et al. Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, southern England)[J]. Geochimica et Cosmochimica Acta, 2004, 68:3 107-3 123.

[27]Archer C, Vance D. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans[J]. Nature Geoscience, 2008, 1: 597-600.

[28]Scott C, Lyons T. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies[J]. Chemical Geology, 2012, 324: 19-27.

[29]Siebert C, Nägler T, von Blanckenburg F, et al. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth and Planetary Science Letters, 2003, 211: 159-171.

[30]Poulson R, McManus J, Siebert C, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.

[31]Siebert C, McManus J, Bice A, et al. Molybdenum isotope signatures in continental margin marine sediments[J].Earth and Planetary Science Letters, 2006, 241: 723-733.

[32]Anbar A, Rouxel O. Metal stable isotopes in paleoceanography[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 717-746.

[33]Severmann S, Johnson C, Beard B, et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2 006-2 022.

[34]Duan Y, Severmann S, Anbar A, et al. Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin[J]. Earth and Planetary Science Letters, 2010, 290: 244-253.

[35]Severmann S, Lyons T, Anbar A, et al. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans[J]. Geology, 2008, 36(6): 487-490.

[36]Yamaguchi K, Johnson C, Beard B, et al. Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons[J]. Chemical Geology, 2005, 218: 135-169.

[37]Raiswell R, Canfield D. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.

[38]Poulton S, Canfield D. Ferruginous conditions: A dominant feature of the ocean through Earth’s history[J]. Elements, 2011, 7(2): 107-112.

[39]Bekker A, Holland H, Wang P, et al. Dating the rise of atmospheric oxygen[J]. Nature, 2004, 427: 117-120.

[40]Rouxel O, Bekker A, Edwards K. Response to comment on “Iron isotope constraints on the Archean and Paleo-Proterozoic ocean redox state”[J]. Science, 2006, 311(5 758): 177.

[41]Poulton S, Fralick P, Canfield D. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3: 486-490.

[42]Yan Bin. Fe Isotope Features of Cap Carbonates and Black Shales in Doushantuo Formation: Implications for Paleo-Oceanography[D]. Beijing: Chinese Academy of Geological Science, 2009.[闫斌. 陡山沱组盖帽白云岩和黑色页岩的铁同位素特征及其古海洋意义[D]. 北京: 中国地质科学院, 2009.]

[43]Zhu M, Lu M, Zhang J, et al. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China[J]. Precambrian Research, 2013,225:7-28.

[44]Siebert C, Kramers J, Meisel T, et al. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochimica et Cosmochimica Acta, 2005, 69: 1 787-1 801.

[45]Wille M, Kramers J, Ngler T, et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2 417-2 435.

[46]Kendall B, Creaser R, Gordon G, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73: 2 534-2 558.

[47]Xu L, Lehmann B, Mao J, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318: 45-59.

[48]Lehmann B, Ngler T, Holland H, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 2007, 35(5): 403-406.

[49]Pearce C, Cohen A, Coe A, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the early Jurassic[J]. Geology, 2008, 36(3): 231-234.

[50]Barling J, Arnold G, Anbar A. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth and Planetary Science Letters, 2001, 193: 447-457.

[51]Kendall B, Gordon G, Poulton S, et al. Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia[J]. Earth and Planetary Science Letters, 2011, 307: 450-460.

[52]Dahl T, Canfield D, Rosing M,et al. Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans[J]. Earth and Planetary Science Letters, 2011, 311: 264-274.

[53]Scott C, Bekker A, Reinhard C, et al. Late Archean euxinic conditions before the rise of atmospheric oxygen[J]. Geology, 2011, 39(2): 119-122.

[54]Reinhard C, Raiswell R, Scott C,et al. A Late Archean Sulfidic Sea stimulated by early oxidative weathering of the continents[J]. Science, 2009, 326(5 953): 713-716.

[55]Duan Y, Anbar A, Arnold G, et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2010, 74: 6 655-6 668.

[56]Canfield D. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453.

[57]Scott C, Lyons T, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452: 456-459.

[58]Dahl T, Anbar A, Gordon G, et al. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland[J]. Geochimica et Cosmochimica Acta, 2010, 74: 144-163.

[1] 常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481.
[2] 杨耀民,石学法,刘季花,王立群. 海洋环境Fe同位素地球化学研究进展[J]. 地球科学进展, 2006, 21(11): 1171-1179.