[1]Anbar A, Knoll A. Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science,2002, 297(5 584): 1 137-1 142.
[2]Fike D, Grotzinger J, Pratt L, et al. Oxidation of the ediacaran ocean[J]. Nature, 2006, 444(7 120): 744-747.
[3]Li C, Love G, Lyons T,et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5 974): 80-83.
[4]Lyons T, Anbar A, Severmann S, et al. Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 507-534.
[5]Johnson C, Brian L. Biogeochemical cycling of iron isotopes[J]. Science, 2005, 309(5 737): 1 025-1 027.
[6]Albarède F. The stable isotope geochemistry of copper and zinc[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 409-427.
[7]Arnold G, Weyer S, Anbar A. Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS[J]. Analytical Chemistry, 2004, 76(2): 322-327.
[8]Weyer S, Schwieters J. High precision Fe isotope measurements with high mass resolution MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2003, 226: 355-368.
[9]Beard B, Johnson C. Fe isotope variations in the modern and ancient Earth and other planetary bodies[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 319-357.
[10]Johnson C, Beard B, Roden E, et al. Isotopic constraints on biogeochemical cycling of Fe[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 359-408.
[11]Arnold G, Anbar A, Barber T, et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans[J]. Science, 2004, 304(5 667): 87-90.
[12]Johnson C, Beard B, Roden E. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 457-493.
[13]Beard B, Johnson C M, Von Damm K, et al. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 2003, 31(7): 629-632.
[14]Levasseur S, Frank M, Hein J, et al. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: Implications for seawater chemistry?[J]. Earth and Planetary Science Letters, 2004, 224: 91-105.
[15]Bullen T, White A, Childs C, et al. Demonstration of significant abiotic iron isotope fractionation in nature[J]. Geology, 2001, 29(8): 699-702.
[16]Croal L, Johnson C, Beard B, et al. Iron isotope fractionation by Fe(II)-oxidizing photoautotropic bacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68: 1 227-1 242.
[17]Icopini G, Anbar A, Ruebush S, et al. Iron isotope fractionation during microbial reduction of iron: The importance of adsorption[J]. Geology, 2004, 32(3): 205-208.
[18]Beard B, Johnson C, Cox L, et al. Iron isotope biosignatures[J]. Science, 1999, 285(5 435): 1 889-1 892.
[19]Crosby H, Johnson C, Roden E, et al. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction[J]. Environmental Science and Technology, 2005, 39(17): 6 698-6 704.
[20]Johnson C, Roden E, Welch S, et al. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction[J]. Geochimica et Cosmochimica Acta, 2005, 69: 963-993.
[21]Butler I, Archer C, Vance D, et al. Fe isotope fractionation on FeS formation in ambient aqueous solution[J]. Earth and Planetary Science Letters, 2005, 236: 430-442.
[22]Guilbaud R, Butler I, Ellam R. Abiotic pyrite formation produces a large Fe isotope fractionation[J]. Science, 2011, 332(6 037): 1 548-1 551.
[23]Rouxel O, Bekker A, Edwards K. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state[J]. Science, 2005, 307(5 712): 1 088-1 091.
[24]Rouxel O, Fouquet Y, Ludden J. Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and iron isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68: 2 295-2 311.
[25]Skulan J, Beard B, Johnson C. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe ( III) and hematite[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2 995-3 015.
[26]Matthews A, Morgans-Bell H, Emmanuel S, et al. Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, southern England)[J]. Geochimica et Cosmochimica Acta, 2004, 68:3 107-3 123.
[27]Archer C, Vance D. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans[J]. Nature Geoscience, 2008, 1: 597-600.
[28]Scott C, Lyons T. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies[J]. Chemical Geology, 2012, 324: 19-27.
[29]Siebert C, Nägler T, von Blanckenburg F, et al. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth and Planetary Science Letters, 2003, 211: 159-171.
[30]Poulson R, McManus J, Siebert C, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.
[31]Siebert C, McManus J, Bice A, et al. Molybdenum isotope signatures in continental margin marine sediments[J].Earth and Planetary Science Letters, 2006, 241: 723-733.
[32]Anbar A, Rouxel O. Metal stable isotopes in paleoceanography[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 717-746.
[33]Severmann S, Johnson C, Beard B, et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2 006-2 022.
[34]Duan Y, Severmann S, Anbar A, et al. Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin[J]. Earth and Planetary Science Letters, 2010, 290: 244-253.
[35]Severmann S, Lyons T, Anbar A, et al. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans[J]. Geology, 2008, 36(6): 487-490.
[36]Yamaguchi K, Johnson C, Beard B, et al. Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons[J]. Chemical Geology, 2005, 218: 135-169.
[37]Raiswell R, Canfield D. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
[38]Poulton S, Canfield D. Ferruginous conditions: A dominant feature of the ocean through Earth’s history[J]. Elements, 2011, 7(2): 107-112.
[39]Bekker A, Holland H, Wang P, et al. Dating the rise of atmospheric oxygen[J]. Nature, 2004, 427: 117-120.
[40]Rouxel O, Bekker A, Edwards K. Response to comment on “Iron isotope constraints on the Archean and Paleo-Proterozoic ocean redox state”[J]. Science, 2006, 311(5 758): 177.
[41]Poulton S, Fralick P, Canfield D. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3: 486-490.
[42]Yan Bin. Fe Isotope Features of Cap Carbonates and Black Shales in Doushantuo Formation: Implications for Paleo-Oceanography[D]. Beijing: Chinese Academy of Geological Science, 2009.[闫斌. 陡山沱组盖帽白云岩和黑色页岩的铁同位素特征及其古海洋意义[D]. 北京: 中国地质科学院, 2009.]
[43]Zhu M, Lu M, Zhang J, et al. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China[J]. Precambrian Research, 2013,225:7-28.
[44]Siebert C, Kramers J, Meisel T, et al. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochimica et Cosmochimica Acta, 2005, 69: 1 787-1 801.
[45]Wille M, Kramers J, Ngler T, et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2 417-2 435.
[46]Kendall B, Creaser R, Gordon G, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73: 2 534-2 558.
[47]Xu L, Lehmann B, Mao J, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318: 45-59.
[48]Lehmann B, Ngler T, Holland H, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 2007, 35(5): 403-406.
[49]Pearce C, Cohen A, Coe A, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the early Jurassic[J]. Geology, 2008, 36(3): 231-234.
[50]Barling J, Arnold G, Anbar A. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth and Planetary Science Letters, 2001, 193: 447-457.
[51]Kendall B, Gordon G, Poulton S, et al. Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia[J]. Earth and Planetary Science Letters, 2011, 307: 450-460.
[52]Dahl T, Canfield D, Rosing M,et al. Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans[J]. Earth and Planetary Science Letters, 2011, 311: 264-274.
[53]Scott C, Bekker A, Reinhard C, et al. Late Archean euxinic conditions before the rise of atmospheric oxygen[J]. Geology, 2011, 39(2): 119-122.
[54]Reinhard C, Raiswell R, Scott C,et al. A Late Archean Sulfidic Sea stimulated by early oxidative weathering of the continents[J]. Science, 2009, 326(5 953): 713-716.
[55]Duan Y, Anbar A, Arnold G, et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2010, 74: 6 655-6 668.
[56]Canfield D. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453.
[57]Scott C, Lyons T, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452: 456-459.
[58]Dahl T, Anbar A, Gordon G, et al. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland[J]. Geochimica et Cosmochimica Acta, 2010, 74: 144-163. |