地球科学进展 ›› 2006, Vol. 21 ›› Issue (11): 1171 -1179. doi: 10.11867/j.issn.1001-8166.2006.11.1171

综述与评述 上一篇    下一篇

海洋环境Fe同位素地球化学研究进展
杨耀民 1,石学法 1,刘季花 1,王立群 2   
  1. 1.海洋沉积与环境地质国家海洋局重点实验室,国家海洋局第一海洋研究所,山东 青岛 266061;2.西北有色地质勘查局712总队,陕西 咸阳 712000 
  • 收稿日期:2006-06-20 修回日期:2006-09-21 出版日期:2006-11-15
  • 通讯作者: 杨耀民 E-mail:yangyaomin@fio.org.cn
  • 基金资助:

    中国大洋协会“十五”开发项目“深海铁锰成矿系统及矿集区研究”(编号:DY105-01-04-02);国家海洋局青年基金项目“海山富钴结壳激光显微探针39Ar/40Ar法年代学探讨”(编号:2006303)资助.

Advances on Fe Isotope Geochemistry in Marine Environments

Yang Yaomin 1,Shi Xuefa 1,Liu Jihua 1,Wang Liqun 2   

  1. 1.The Key Laboratory of Marine Sedimentology and Environmental Geology, The First Institute of Oceanography, SOA, Qingdao 266061,China; 2.The 712 Team of Northwestern Geoexploration Bureau for Nonferrous Metal Resources, shaanxi Province, Xianyang 712000,China
  • Received:2006-06-20 Revised:2006-09-21 Online:2006-11-15 Published:2006-11-15

Fe是海洋“生物泵”中限制浮游生物生长和控制海洋初级生产力的主要因素之一,也可间接影响大气中CO2含量,反馈于全球的气候变化。近年来基于多接收电感耦合等离子体质谱仪(MC-ICP-MS)分析方法的改进及测试精度的提高,应用Fe同位素组成、变化及其分馏机制,为研究海水中Fe的主要来源以及示踪海洋环境中Fe的循环过程等,提供了一个有效地球化学指标,也对示踪地球不同演化阶段的海洋沉积环境变化具有指示意义。较为详细地介绍了海洋环境中不同储库的Fe同位素组成,洋中脊热液流体—玄武岩、海水—大洋玄武岩等水—岩反应影响Fe同位素分馏效应的主要因素及地球不同演化阶段古海洋沉积环境中的Fe同位素变化。认为海洋环境下Fe同位素可以产生较为明显的分馏作用,轻铁同位素具有更易活动、易迁移的特征,并进一步提出不同相态、不同矿物间Fe同位素分馏系数的确定等相关问题仍是今后Fe同位素研究的主要方向。

The chemistry of iron in the oceans plays an important role in controlling primary production and serves a limited micronutrient element for planktons in “biological pump”, and consequently Fe is corresponding potential for regulating global climate by fertilizing the ocean and drawing down atmospheric CO2. In recent years, the development in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have improved precision for iron isotope measurements, and therefore both the isotope composition of iron and isotope fractionation effects have been proved useful in tracing the processes that control inputs and outputs of Fe in the ocean and paleoceanographic evolution. This review summarizes our present knowledge of iron isotope geochemistry which documents the Fe isotope composition in various Fe reservoirs of marine systems, and the main Fe isotope fractionations produced by reaction between hydrothermal fluids and mid-ocean basalts and between seawater and submarine basalts, and the Fe isotope composition in various stages of ancient marine sedimentary environments. Furthermore, our review shows that Fe isotope occur significant fractionation in marine systems and light Fe isotope have higher removal activity than heavy Fe isotope. Finally, we highlight the fact that determining the Fe isotope fractionation factor among various mineral, various phases and during biochemical cycling will be an important future avenue of research, which will bear on our understanding of isotopic variations of Fe in both ancient and modern marine sedimentary environments.

中图分类号: 

[1] Rudnick R L, Gao S. Composition of the continental crust[C]Rudnick R L, ed. Treaise on Geochemistry Volume 3: The crust.Amsterdam: Elsevier Press,2004:1-64.

[2] Beard B L, Johnson C M. Fe isotope variations in the modern and ancient earth and other planetary bodies[J]. Review Mineralogy & Geochemistry, 2004, 55: 319-357.

[3] Albarède F, Beard B L. Analytical methods for non-traditional isotopes[J]. Review Mineralogy & Geochemistry, 2004, 55: 113-151.

[4] Arnold G L, Weyer S, Anbar A D. Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS [J]. Analytical Chemistry, 2004, 76: 322-327.

[5] Weyer S, Schwieters J B. High precision Fe isotope measurements with high mass resolution MCICPMS [J]. International Journal of Mass Spectrometry,2003,226:355-368.

[6] Beard B L, Johnson C M. High Precision iron isotope measurements of terrestrial and lunar material [J]. Geochimica et Cosmochimica Acta,1999, 63:1 653-1 660.

[7] Zhu X K, O′Nions R K, Guo Y, et al. Secular variation of iron isotopes in north Atlantic Deep Water [J]. Science,2000,287:2 000-2 002.

[8] Zhu X K, Guo Y, O'Nions R K, et al. Isotopic homogeneity of iron in the early solar nebula [J]. Nature,2001, 412:311-313.

[9] Johnson C M, Beard B L. Biogeochemical cycling of iron isotope [J]. Science,2005,309:1 025-1 027.

[10] Anbar A D. Iron stable isotopes: Beyond biosignatures [J]. Earth and Planetary Science Letter,2004, 217:223-236.

[11] Yu Jimin, Jiang Shaoyong. Recent adances in Fe isotope geochemistry [J]. Journal of Nanjing University (Natural Sciences), 2001, 37(3): 385-389.[于际民,蒋少涌. Fe 同位素地球化学进展 [J]. 南京大学学报:自然科学版,2001,37(3):385-389.]

[12] Jiang Shaoyong. Transition metal isotopes: analytical methods and geology applications [J]. Earth Science Frontiers, 2003, 10 (2): 269-278.[蒋少涌. 过渡族金属元素同位素分析方法及其地质应用 [J]. 地学前缘,2003,10(2):269-278.

[13] Skulan J L, Beard B L, Johnson C M, Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite[J]. Geochimica et Cosmochimica Acta,2002,66:2 995-3 015.

[14] Beard B L, Johnson C M. High precision iron isotope measurements of terrestrial and lunar materials [J]. Geochimica et Cosmochimica Acta,1999, 63:1 653-1 660.

[15] Johnson K S, Gordon R M, Coale K H. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry,1997, 57:137-161.

[16] Wu J, Boyle E A, Wen L. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific [J]. Science,2001,293: 847-849.

[17] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science,2005, 308: 67-71.

[18] Ussher S J, Achterberg E R, Worsfold P. Marine biogeochemistry of iron[J]. Environmental Chemistry, 2004, 1: 67-80.

[19] Alt J C. Hydrothermal fluxes at mid-ocean ridges and on ridge flanks, C R [J]. Geoscience, 2003, 335: 853-864.

[20] Bergquist B, Boyle E. Iron isotopic composition of Amazon River [N]. EOS(Transactions, American Geophysical Union),2002, 83: OS12C-0290.

[21] Fantle M S, DePaolo D J, The isotopic composition of continental iron and implications for the global Fe cycle [N]. EOS, Transactions, American Geophysical Union, 2002, 83: V22B-1234.

[22] Matthews A, Zhu X-K, O'Nions R K. Kinetic iron stable isotope fractionation between iron (-II) and (-III) complexes in solution[J]. Earth Planetary Science Letter, 2001, 192: 81-92.

[23] Rouxel O, Sholkovitz E. Large Scale Iron Isotope Fractionation in Subterranean Estuaries[J]. Geophysical Research Abstracts,2006,8:05141.

[24] Elrod V A, Berelson W M, Coale K H, et al. The flux of iron from continental shelf sediments: A missing source for global budgets [J]. Geophysical Research Letter,2004,31:L12307. doi:10.1029/2004GL020216.

[25] Severmann S, Johnson C M, Beard B L, et al. The effect of early diagenesis on the Fe isotope compositions of poreeaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2006, in press.

[26] Beard B L, Johnson C M, Von Damm K L. Poulson RLIron isotope constraints on Fe cycling and mass balance in the oxygenated Earth oceans[J]. Geology,2003,31:629-632.

[27] Koschinsky A, Halback P. Sequential leaching of marine ferromanganese precipitates: Genetic implications[J]. Geochimica et Cosmochimica Acta,1995,59:5 113-5 132.

[28] Chu N C, Johnson C M, Beard B L, et al. Evidence for hydrothermal venting in the Fe isotope compositions of deep Pacific ocean through time[J]. Earth Planetary Science Letter,2006,in press.

[29] Yang Y M, Rouxel O, Shi X F, et al. Fe isotope composition of Fe-Mn crusts in Pacific and its significance for Paleoceanography[J]. Geophysical Research Abstracts,2006,8:08710.

[30] Levasseur S, Frank M, Hein, J R, et al. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: implications for seawater chemistry?[J]. Earth and Planetary Science Letter, 2004, 224:91-105.

[31] Severmann S, Johnson C M, Beard B L, et al. The effect of plume processes on the Fe isotope composition of hydrothermally derieved Fe in the deep oceans as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36o14'N [J]. Earth and Planetary Science Letter,2004,225(1/2):63-76.

[32] Polyakov V B, Mineev S D. The use of Mössbauer spectroscopy in stable isotope geochemistry [J]. Geochimica et Cosmochimica Acta,2000,64:849-865.

[33] Rouxel O, Fouquet Y, Ludden J N, Subsurface processes at the Lucky Strike Hydrothermal Field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and iron isotopes[J]. Geochimica et Cosmochimica Acta,2004,68:2 295-2 311.

[34] Sharma M, Polizzotto M, Anbar A D. Iron isotopes in hot springs along the Juan de Fuca Ridge [J]. Earth and Planetary Science Letter, 2001, 194:39-51.

[35] Graham S, Pearson N, Jackson S, et al. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu Au deposit [J]. Chemical Geology,2004,207:147-169.

[36] Staudigel H, Plank, T, White B, et al. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 418 and 417[C]Bebout G, et al. eds. Subduction: Top to bottom. Washington DC: Americal Geophysical Union, 1996:19-38.

[37] Rouxel O, Dobbek N, Ludden J, et al. Iron isotope fractionation during oceanic crust alteration[J]. Chemical  Geology,2003,202:155-182.

[38] Bekker A, Holland H D, Wang P-L, et al. Dating the rise of atmospheric oxygen [J]. Nature, 2004, 427:117-20.

[39] Canfield D E. A new model for Proterozoic ocean chemistry[J].Nature,1998, 396:450-453.

[40] Canfield D E. The early history of atmospheric oxygen: Homage to Robert M Gerrels. Annu[J]. Review in Earth Planetary Science,2005,33:1-36.

[41] Farquhar J, Bao H M, Thiemens M. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science,2000, 289:756-58.

[42] Johnson C M, Beard B L, Beukes N J, et al. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton [J]. Contribution to Mineralogy and Petrology, 2003, 144:523-547.

[43] Rouxel O, Bekker A, Edwards K. Iron isotope constraints on the archean and Paleoproerozoic ocean redox state[J]. Science,2005,307:1 088-1 091.

[1] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[2] 许 妍, 曹 可, 李 冕, 许自舟. 海岸带生态风险评价研究进展[J]. 地球科学进展, 2016, 31(2): 137-146.
[3] 崔豪,周炼,李超,彭兴芳,金承胜,石炜,张子虎,罗根明,谢树成. Fe-Mo同位素与古海洋化学演化[J]. 地球科学进展, 2013, 28(9): 1049-1056.
[4] 何剑锋,张芳,林凌. 我国极地海底观测系统的发展与展望[J]. 地球科学进展, 2013, 28(5): 566-571.
[5] 王艳娜, 刘东艳. 海洋沉积硅藻研究方法与应用综述[J]. 地球科学进展, 2013, 28(12): 1296-1304.
[6] 吴 琼,刘志飞. Nd同位素方法应用于示踪古洋流的研究进展[J]. 地球科学进展, 2010, 25(2): 220-229.
[7] 王成金. 现代港口地理学的研究进展及展望[J]. 地球科学进展, 2008, 23(3): 243-251.
[8] 肖洪浪,李锦秀,赵良菊,程国栋. 土壤水异质性研究进展与热点[J]. 地球科学进展, 2007, 22(9): 954-959.
[9] 李耀辉,张书余. 我国沙尘暴特征及其与干旱关系的研究进展[J]. 地球科学进展, 2007, 22(11): 1169-1176.
[10] 胡娅敏,丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
[11] 吴德星,兰健. 中国东部陆架边缘海海洋物理环境演变及其环境效应[J]. 地球科学进展, 2006, 21(7): 667-672.
[12] 陈光华,黄荣辉. 西北太平洋热带气旋和台风活动若干气候问题的研究[J]. 地球科学进展, 2006, 21(6): 610-616.
[13] 夏军,左其亭. 国际水文科学研究的新进展[J]. 地球科学进展, 2006, 21(03): 256-261.
[14] 宋长青;冷疏影. 当代地理学特征:发展趋势及中国地理学研究进展[J]. 地球科学进展, 2005, 20(6): 595-599.
[15] 梁海河;徐宝祥;刘黎平;葛润生. 偏振微波雷达探测大气研究进展及几个问题的考虑[J]. 地球科学进展, 2005, 20(5): 541-548.
阅读次数
全文


摘要