[1] |
Neelin J D, Battisti D S, Hirst A C, et al. ENSO theory[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14 261-14 290.
|
[2] |
Li W B.Modelling air-sea fluxes during a Western Pacific typhoon: Role of sea spray[J].Advances in Atmospheric Sciences, 2004, 21(2): 269-276.
|
[3] |
Chelton D B, Xie S P.Coupled ocean-atmosphere interaction at oceanic mesoscales[J].Oceanography, 2010, 23(4): 52-69.
|
[4] |
Chelton D B, Schlax M G, Freilich M H, et al. Satellite measurements reveal persistent small-scale features in ocean winds[J]. Science, 2004, 303(5 660): 978-983.
|
[5] |
Skyllingstad E D, Vickers D, Mahrt L, et al. Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer[J]. Boundary-layer Meteorology, 2007, 123(2): 219-237.
|
[6] |
Sproson D, Sahlée E.Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer[J]. Tellus A: Dynamic Meteorology and Oceanography, 2014, 66(1): 24 041, doi: 10.3402/tellusa.v66.24041.
|
[7] |
Chelton D B, Esbensen S K, Schlax M G, et al. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific[J]. Journal of Climate, 2001, 14(7): 1 479-1 498.
|
[8] |
Chelton D.Ocean-atmosphere coupling: Mesoscale eddy effects[J].Nature Geoscience,2013, 6(8): 594-595.
|
[9] |
O’Neill L W, Esbensen S K, Thum N, et al. Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations[J]. Journal of Climate, 2010, 23(3): 559-581.
|
[10] |
Edson J, Crawford T, Crescenti J, et al. The coupled boundary layers and air sea transfer experiment in low winds[J]. Bulletin of the American Meteorological Society, 2007, 88: 341-356.
|
[11] |
Businger J A, Shaw W J.The response of the marine boundary layer to mesoscale variations in sea-surface temperature[J]. Dynamics of Atmospheres and Oceans, 1984, 8(3/4): 267-281.
|
[12] |
Cheng Xuhua, Qi Yiquan.Distribution and propagation of mesoscale eddies in the global oceans learnt from altimetric data[J]. Advances in Marine Science, 2008, 26(4): 447-457.
|
|
[程旭华, 齐义泉. 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. 海洋科学进展, 2008, 26(4): 447-457.]
|
[13] |
Chelton D B, Schlax M G, Samelson R M.Global observations of nonlinear mesoscale eddies[J].Progress in Oceanography, 2011, 91(2): 167-216.
|
[14] |
Volkov D L, Tong L, Fu L.Eddy-induced meridional heat transport in the ocean[J]. Geophysical Research Letters, 2008, 35(20): 295-296.
|
[15] |
Shang Xiaodong, Xu Chi, Chen Guiying, et al. Review on mechanical energy of ocean mesoscale eddies and associated energy source and sinks[J]. Journal of Tropical Oceanography, 2013, 32(2): 24-36.
|
|
[尚晓东, 徐驰, 陈桂英, 等. 海洋中尺度涡的机械能及其源汇研究[J]. 热带海洋学报, 2013, 32(2): 24-36.]
|
[16] |
Zhang Z, Zhang Y, Wang W, et al. Universal structure of mesoscale eddies in the ocean[J]. Geophysical Research Letters, 2013, 40(14): 3 677-3 681.
|
[17] |
Chang C H, Xie S P, Schneider N, et al. East Pacific ocean eddies and their relationship to subseasonal variability in Central American wind jets[J]. Journal of Geophysical Research Oceans, 2012, 117(C10),doi:10.1029/2011JC007315.
|
[18] |
Gaube P, Chelton D B, Samelson R M, et al. Satellite observations of mesoscale eddy-induced Ekman pumping[J]. Journal of Physical Oceanography, 2015, 45(1): 104-132.
|
[19] |
Sabu P, George J V, Anilkumar N, et al. Observations of watermass modification by mesoscale eddies in the subtropical frontal region of the Indian ocean sector of southern ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 118(Suppl.1): 152-161.
|
[20] |
Lambaerts J, Lapeyre G, Plougonven R, et al. Atmospheric response to sea surface temperature mesoscale structures[J]. Journal of Geophysical Research Atmospheres, 2013, 118(17): 9 611-9 621.
|
[21] |
Qiu B, Chen S.Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J]. Journal of Physical Oceanography, 2005, 35(4): 458-473.
|
[22] |
Chu X, Xue H, Qi Y, et al. An exceptional anticyclonic eddy in the South China Sea in 2010[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 881-897.
|
[23] |
Hausmann U, Czaja A.The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 70(1): 60-72.
|
[24] |
Chen G, Hou Y, Chu X.Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): 102-108.
|
[25] |
White W B, Annis J L.Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer[J]. Journal of Physical Oceanography, 2003, 33(5): 1 095-1 107.
|
[26] |
Haack T, Chelton D, Pullen J, et al. Summertime influence of SST on surface wind stress off the US West Coast from the US Navy COAMPS model[J]. Journal of Physical Oceanography, 2008, 38(11): 2 414-2 437.
|
[27] |
Shi Jianxin, Jiang Xiaoping, Jiang Hongfeng, et al. The effect of ocean warm eddy on tropic cyclone intensity[J]. Marine Forecasts,2010, 27(6): 1-4.
|
|
[石建新, 蒋小平, 姜洪峰, 等. 海洋中暖涡对热带气旋强度的影响[J]. 海洋预报, 2010, 27(6): 1-4.]
|
[28] |
Sweet W, Fett R, Kerling J, et al. Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream[J].Monthly Weather Review, 1981, 109(5): 1 042-1 052.
|
[29] |
Mahrt L, Vickers D, Moore E.Flow adjustments across sea-surface temperature changes[J]. Boundary-Layer Meteorology, 2004, 111(3): 553-564.
|
[30] |
Tokinaga H, Tanimoto Y, Xie S P, et al. Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations[J]. Journal of Climate, 2009, 22(16): 4 241-4 260.
|
[31] |
Nonaka M, Xie S P.Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback[J]. Journal of Climate, 2003, 16(9): 1 404-1 413.
|
[32] |
Xie S P.Satellite observations of cool ocean atmosphere interaction[J]. Bulletin of the American Meteorological Society, 2004, 85(2): 195-208.
|
[33] |
Zhai X, Greatbatch R J.Surface eddy diffusivity for heat in a model of the northwest Atlantic Ocean[J]. Geophysical Research Letters, 2006, 33(24): 194-199.
|
[34] |
Leyba I M, Saraceno M, Solman S A.Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions[J]. Climate Dynamics, 2016: 1-11, doi 10.1007/s00382-016-3460-5.
|
[35] |
Bourras D, Reverdin G, Giordani H, et al. Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic[J]. Journal of Geophysical Research, 2004, 109: D18114, doi: 10.1029/2004JD004799.
|
[36] |
Villas Bôas A B, Sato O T, Chaigneau A, et al. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean[J]. Geophysical Research Letters, 2015, 42(6): 1 856-1 862.
|
[37] |
Thum N, Esbensen S K, Chelton D B, et al. Air-sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific[J]. Journal of Climate, 2002, 15(23): 3 361-3 378.
|
[38] |
Frenger I, Gruber N, Knutti R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612.
|
[39] |
Rouault M, Verley P, Backeberg B.Wind increase above warm Agulhas Current eddies[J]. Ocean Science Discussions, 2016, 12(2): 495-506.
|
[40] |
Bond N A.Observations of planetary boundary-layer structure in the eastern equatorial Pacific[J]. Journal of Climate, 1992, 5(7): 699-706.
|
[41] |
Moeng C H, Sullivan P P.A comparison of shear-and buoyancy-driven planetary boundary layer flows[J]. Journal of the Atmospheric Sciences, 1994, 51(7): 999-1 022.
|
[42] |
Messager C, Swart S.Significant atmospheric boundary layer change observed above an agulhas current warm cored eddy[J]. Advances in Meteorology, 2016,doi:10.1155/2016/3659657.
|
[43] |
Ma Jing, Xu Haiming, Dong Changming.Atmospheric response to mesoscale oceanic eddies over the Kuroshio Extension: Case analyses of warm and cold eddies in winter[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 438-452.
|
|
[马静, 徐海明, 董昌明. 大气对黑潮延伸体区中尺度海洋涡旋的响应——冬季暖、冷涡个例分析[J]. 大气科学, 2014, 38(3): 438-452.]
|
[44] |
Xie L, Pietrafesa L J, Raman S.Mesoscale air-sea interactions over the continental shelf off the Carolina Coast[J]. The Global Atmosphere and Ocean System, 1996, 4(1): 65-88.
|
[45] |
Rouault M, Lutjeharms J R E. Air-sea exchange over an Agulhas eddy at the subtropical convergence[J]. Global Atmosphere & Ocean System, 2000, 7(2):125-150.
|
[46] |
Chow C H, Liu Q.Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea[J]. Geophysical Research Letters, 2012, 39(2): L02601, doi: 10.1029/2011GL050230.
|
[47] |
Sun S, Fang Y, Liu B.Coupling between SST and wind speed over mesoscale eddies in the South China Sea[J]. Ocean Dynamics, 2016, 66(11): 1 467-1 474.
|
[48] |
Seo H, Miller A J, Norris J R.Eddy-wind interaction in the California Current System: Dynamics and impacts[J]. Journal of Physical Oceanography, 2016, 46(2): 439-459.
|
[49] |
Jin X, Dong C, Kurian J, et al. SST-wind interaction in coastal upwelling: Oceanic simulation with empirical coupling[J]. Journal of Physical Oceanography, 2009, 39(11): 2 957-2 970.
|
[50] |
Byrne D, Papritz L, Frenger I, et al. Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic[J]. Journal of the Atmospheric Sciences, 2015, 72(5): 1 872-1 890.
|
[51] |
Chen L, Jia Y, Liu Q.Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region[J]. Journal of Oceanography, 2017, 73(3): 295-307.
|
[52] |
Perlin N, Szoeke S P D, Chelton D B, et al. Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations[J]. Monthly Weather Review, 2014, 142(11): 4 284-4 307.
|
[53] |
Ma J, Xu H, Dong C, et al. Atmospheric responses to oceanic eddies in the Kuroshio Extension region[J]. Journal of Geophysical Research Atmospheres, 2015, 120(13): 6 313-6 330.
|
[54] |
Ma J, Xu H, Dong C.Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension[J]. Tellus A, 2016, 68(1), doi: 10.3402/tellusa.v68.31563.
|
[55] |
Wentz F J, Gentemann C, Smith D, et al. Satellite measurements of sea surface temperature through clouds[J]. Science, 2000, 288(5 467): 847-850.
|
[56] |
Zhang G J, Mcphaden M J.The relationship between sea surface temperature and latent heat flux in the equatorial Pacific[J]. Journal of Climate, 2014, 8: 589-605.
|
[57] |
Putrasahan D A, Miller A J, Seo H.Isolating mesoscale coupled ocean-atmosphere interactions in the Kuroshio extension region[J]. Dynamics of Atmospheres and Oceans, 2013, 63(5): 60-78.
|
[58] |
Abel R, Böning C W, Greatbatch R J, et al. Feedback of mesoscale ocean currents on atmospheric winds in high-resolution coupled models and implications for the forcing of ocean-only models[J]. Ocean Science Discussions, 2017, doi: 10.5194/os-2017-24.
|
[59] |
Oerder V, Colas F, Echevin V, et al. Mesoscale SST-wind stress coupling in the Peru-Chile current system: Which mechanisms drive its seasonal variability?[J]. Climate Dynamics, 2015, 47(7/8): 2 309-2 330.
|
[60] |
Lindzen R S, Nigam S.On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. Journal of the Atmospheric Sciences, 1987, 44(17): 2 418-2 436.
|
[61] |
Wai M M K, Stage S A. Dynamical analyses of marine atmospheric boundary layer structure near the Gulf Stream oceanic front[J]. Quarterly Journal of the Royal Meteorological Society, 1989, 115(485): 29-44.
|
[62] |
Shimada T, Minobe S.Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data[J]. Geophysical Research Letters, 2011, 38(38): 441-453.
|
[63] |
Wallace J M, Mitchell T P, Deser C.The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability[J]. Journal of Climate, 1989, 2(12): 1 492-1 499.
|
[64] |
Hayes S P, McPhaden M J, Wallace J M. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability[J]. Journal of Climate, 1989, 2(12): 1 500-1 506.
|
[65] |
Samelson R M, Skyllingstad E D, Chelton D B, et al. On the coupling of wind stress and sea surface temperature[J]. Journal of Climate, 2006, 19(8): 1 557-1 566.
|
[66] |
Small R J, Xie S P, O’Neill L, et al. Air-sea interaction over ocean fronts and eddies[J]. Dynamics of Atmospheres and Oceans, 2008, 45(3): 274-319.
|
[67] |
Small R J, Xie S P, Wang Y.Numerical simulation of atmospheric response to pacific tropical instability waves[J]. Journal of Climate, 2003, 16(22): 3 723-3 741.
|
[68] |
Xu Mimi, Xu Haiming, Zhu Suxing.Ocean-to-atmosphere forcing in the vicinity of the sea surface temperature front in East China Sea during spring time and its possible mechanisms[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(6): 1 071-1 087.
|
|
[徐蜜蜜, 徐海明, 朱素行. 春季我国东部海洋温度锋区对大气的强迫作用及其机制研究[J]. 大气科学, 2010, 34(6): 1 071-1 087.]
|
[69] |
Song Q, Hara T, Cornillon P, et al. A comparison between observations and MM5 simulations of the marine atmospheric boundary layer across a temperature front[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2): 170-178.
|
[70] |
Maloney E D, Chelton D B.An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models[J]. Journal of Climate, 2006, 19(12): 2 743-2 762.
|
[71] |
Piazza M, Terray L, Boé J, et al. Influence of small-scale North Atlantic Sea surface temperature patterns on the marine boundary layer and free troposphere: A study using the atmospheric ARPEGE model[J]. Climate Dynamics, 2016, 46(5/6): 1 699-1 717.
|
[72] |
Zhou G, Latif M, Greatbatch R J, et al. Atmospheric response to the North Pacific enabled by daily sea surface temperature variability[J]. Geophysical Research Letters, 2015, 42(18): 7 732-7 739.
|
[73] |
Ma X, Chang P, Saravanan R, et al. Distant influence of Kuroshio eddies on North Pacific weather patterns?[J]. Scientific Reports, 2015, 5, doi: 10.1038/srep17785.
|
[74] |
Small R J, Tomas R A, Bryan F O.Storm track response to ocean fronts in a global high-resolution climate model[J]. Climate Dynamics, 2014, 43(3/4): 805-828.
|
[75] |
Ma X, Jing Z, Chang P, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere[J]. Nature, 2016, 535(7 613): 533-537.
|
[76] |
Ma X, Chang P, Saravanan R, et al. Importance of resolving Kuroshio front and eddy influence in simulating North Pacific Storm Track[J]. Journal of Climate, 2017, 30(5): 1 861-1 880.
|
[77] |
Black P G, D’Asaro E A, Drennan W M, et al. Air sea exchange in Hurricanes: Synthesis of observations from the coupled boundary layer air sea transfer experiment[J]. Bulletin of the American Meteorological Society, 2007, 88: 357-374.
|
[78] |
D’Asaro E A, Black P G, Centurioni L R, et al. Impact of Typhoons on the ocean in the Pacific[J]. Bulletin of the American Meteorological Society, 2014, 95: 1 405-1 418.
|
[79] |
Yang G, Wang F, Li Y, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research Oceans, 2013, 118: 1 906-1 925.
|
[80] |
Emanuel K, DesAutels C, Holloway C, et al. Environmental control of tropical cyclone intensity[J]. Journal of the Atmospheric Sciences, 2004, 61(7): 843-858.
|
[81] |
Goni G J, Trinanes J A.Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones[J]. Eos, Transactions American Geophysical Union, 2003, 84(51): 573-578.
|
[82] |
Scharroo R, Smith W H F, Lillibridge J L. Satellite altimetry and the intensification of Hurricane Katrina[J]. Eos, Transactions American Geophysical Union, 2005, 86(40): 366-366.
|
[83] |
Jacob S D, Shay L K.The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study[J]. Journal of Physical Oceanography, 2003, 33(4): 649-676.
|
[84] |
Pun I F, Lin I I, Wu C R, et al. Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1 616-1 630.
|
[85] |
Lin I I, Chou M D, Wu C C.The impact of a warm ocean eddy on typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling[J]. Terrestrial Atmospheric & Oceanic Sciences, 2012, 22(6): 661-671.
|
[86] |
Liu Guangping, Hu Jianyu.Response of the mesoscale eddies to tropical cyclones in the South China Sea[J]. Journal of Oceanography Taiwan Strait, 2009, 28(3): 308-315.
|
|
[刘广平, 胡建宇. 南海中尺度涡旋对热带气旋的响应:个例研究[J]. 台湾海峡, 2009, 28(3): 308-315.]
|
[87] |
Bender M A, Ginis I, Kurihara Y.Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D12): 23 245-23 263.
|
[88] |
Ma Z, Fei J, Liu L, et al. Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air-sea interaction conditions[J]. Monthly Weather Review, 2013, 141(4): 1 285-1 303.
|
[89] |
Ali M M, Jagadeesh P S V, Jain S. Effects of eddies on bay of Bengal cyclone intensity[J]. Eos Transactions American Geophysical Union, 2013, 88(8): 93-95.
|
[90] |
Bao J W, Wilczak J M, Choi J K, et al. Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development[J]. Monthly Weather Review, 2000, 128(7): 2 190-2 210.
|
[91] |
Shay L K, Goni G J, Marks F D, et al. Role of warm ocean features on intensity change: Hurricane Opal. Preprints[C]∥Symposium on Tropical Cyclone Intensity Change. Phoenix, AZ, American Meteorological Society,1998: 131-138.
|
[92] |
Hong X, Chang S W, Raman S, et al. The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico[J]. Monthly Weather Review, 2000, 128(5): 1 347-1 365.
|
[93] |
Lin I I, Wu C C, Emanuel K A, et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy[J]. Monthly Weather Review, 2005, 133(9): 2 635-2 649.
|
[94] |
Yang F, Peng H, Du Y, et al. A GIS study of the influences of warm ocean eddies on the intensity variations of tropical cyclones in the South China Sea[J]. ISPRS International Journal of Geo-Information, 2016, 5(10): 169, doi: 10.3390/ijgi5100169.
|
[95] |
Wu C C, Lee C Y, Lin I I.The effect of the ocean eddy on tropical cyclone intensity[J]. Journal of the Atmospheric Sciences, 2007, 64(10): 3 562-3 578.
|