地球科学进展 ›› 2017, Vol. 32 ›› Issue (10): 1039 -1049. doi: 10.11867/j.issn.1001-8166.2017.10.1039

上一篇    下一篇

大气对海洋中尺度涡响应的研究进展
黎伟标( ), 刘昊亚, 方容   
  1. 中山大学大气科学学院,广东 广州 510275
  • 收稿日期:2017-07-12 修回日期:2017-09-02 出版日期:2017-12-20
  • 基金资助:
    国家自然科学基金面上项目“南海海洋中尺度涡对局地环流和天气系统的影响”(编号: 41675043)和“南海地区夏季大气短周期振荡特征及相关海气相互作用过程的研究”(编号: 41375050)资助.

Review of the Atmospheric Response to the Ocean Mesoscale Eddies

Weibiao Li( ), Haoya Liu, Rong Fang   

  1. School of Atmospheric Science, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2017-07-12 Revised:2017-09-02 Online:2017-12-20 Published:2017-10-20
  • About author:

    First author:Li Weibiao (1965-), male, Wuzhou City, Guangxi Province, Professor. Research areas include the tropical meteorology and the air-sea interaction.E-mail:eeslwb@mail.sysu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China“Effects of the ocean mesosale eddies over the South China Sea on the local atmospheric circulations and weather systems”(No.41675043)and “Summer short period oscillations over the South China Sea and the related air-sea interaction processes”(No.41375050).

海洋中尺度涡广泛分布于全球海洋且能对大气造成显著影响。在全面陈述大气边界层和局地环流对中尺度涡响应的基础上,论述了与其相应的物理机制,并系统介绍了有关中尺度涡对天气系统影响的最新研究进展。①中尺度涡引起的海表温度异常通过改变湍流热通量来引起洋面风速、散度以及云量和降水的异常,并在垂直方向上产生异常的次级环流。并且,大气对中尺度涡的响应有明显的区域和季节差异。②在南海、黑潮延伸区和南大洋,中尺度涡可分别通过改变海表面气压或大气边界层稳定度来影响其上的洋面风速。通过分析大气异常中心与中尺度涡的位相关系并配合动力诊断可区分这2种机制。③中尺度涡能改变大气中的能量转换从而影响风暴路径和急流位置,并能通过遥相关影响下游地区的天气型。此外,中尺度涡所造成的海洋上层温度变化还将对热带气旋的增强和维持起重要作用。

As one of the most important mesoscale ocean features, the mesoscale eddies are omnipresent and have significant impact on the overlying atmosphere. Based on the comprehensive review of the influence of mesoscale eddies on the atmospheric boundary layer and the local circulation, the corresponding physical mechanisms and their impacts on weather systems were presented systematically. ①Eddy-induced SST anomalies may modify the surface wind speed, horizontal divergence, cloud and precipitation through turbulence heat flux anomalies. Meanwhile, additional secondary circulations arise over the eddies. What is more, there are obvious regional and seasonal differences for atmospheric responses. ② Studies in the South China Sea, the Kuroshio Extension region and the Southern Ocean indicate that atmospheric responses to mesoscale eddies can be explained by the changes of sea level pressure or the vertical momentum transport. These two mechanisms can be distinguished by the phase relationship between the atmospheric anomaly center and the eddy core. Diagnosis on the inner dynamical processes may draw better conclusions. ③The energy conversions are affected by mesoscale eddies, which may affect storm tracks and jet streams, and finally result in distant influences on weather patterns. Moreover, sea temperature anomalies from sea surface to the thermocline associated with mesoscale eddies have significant impacts on the intensification and the maintenance of tropical cyclones.

中图分类号: 

图1 暖、冷涡对应的涡、散度异常示意图
红色和蓝色圆圈分别代表暖涡和冷涡,实线箭头代表大小和方向一致的背景西风,虚线箭头代表中尺度涡上洋面风矢量
Fig.1 Schematic of the surface wind divergence and curl response to the warm and cold eddies
The red and the blue area represents warm and cold SST anomalies, solid arrows represent the large-scale westerly and dashed arrows indicate wind anomalies over the mesoscale eddies
表1 不同区域大气对海洋中尺度涡的响应
Table 1 Atmospheric response to ocean mesoscale eddies in different regions
[1] Neelin J D, Battisti D S, Hirst A C, et al. ENSO theory[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14 261-14 290.
[2] Li W B.Modelling air-sea fluxes during a Western Pacific typhoon: Role of sea spray[J].Advances in Atmospheric Sciences, 2004, 21(2): 269-276.
[3] Chelton D B, Xie S P.Coupled ocean-atmosphere interaction at oceanic mesoscales[J].Oceanography, 2010, 23(4): 52-69.
[4] Chelton D B, Schlax M G, Freilich M H, et al. Satellite measurements reveal persistent small-scale features in ocean winds[J]. Science, 2004, 303(5 660): 978-983.
[5] Skyllingstad E D, Vickers D, Mahrt L, et al. Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer[J]. Boundary-layer Meteorology, 2007, 123(2): 219-237.
[6] Sproson D, Sahlée E.Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer[J]. Tellus A: Dynamic Meteorology and Oceanography, 2014, 66(1): 24 041, doi: 10.3402/tellusa.v66.24041.
[7] Chelton D B, Esbensen S K, Schlax M G, et al. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific[J]. Journal of Climate, 2001, 14(7): 1 479-1 498.
[8] Chelton D.Ocean-atmosphere coupling: Mesoscale eddy effects[J].Nature Geoscience,2013, 6(8): 594-595.
[9] O’Neill L W, Esbensen S K, Thum N, et al. Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations[J]. Journal of Climate, 2010, 23(3): 559-581.
[10] Edson J, Crawford T, Crescenti J, et al. The coupled boundary layers and air sea transfer experiment in low winds[J]. Bulletin of the American Meteorological Society, 2007, 88: 341-356.
[11] Businger J A, Shaw W J.The response of the marine boundary layer to mesoscale variations in sea-surface temperature[J]. Dynamics of Atmospheres and Oceans, 1984, 8(3/4): 267-281.
[12] Cheng Xuhua, Qi Yiquan.Distribution and propagation of mesoscale eddies in the global oceans learnt from altimetric data[J]. Advances in Marine Science, 2008, 26(4): 447-457.
[程旭华, 齐义泉. 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. 海洋科学进展, 2008, 26(4): 447-457.]
[13] Chelton D B, Schlax M G, Samelson R M.Global observations of nonlinear mesoscale eddies[J].Progress in Oceanography, 2011, 91(2): 167-216.
[14] Volkov D L, Tong L, Fu L.Eddy-induced meridional heat transport in the ocean[J]. Geophysical Research Letters, 2008, 35(20): 295-296.
[15] Shang Xiaodong, Xu Chi, Chen Guiying, et al. Review on mechanical energy of ocean mesoscale eddies and associated energy source and sinks[J]. Journal of Tropical Oceanography, 2013, 32(2): 24-36.
[尚晓东, 徐驰, 陈桂英, 等. 海洋中尺度涡的机械能及其源汇研究[J]. 热带海洋学报, 2013, 32(2): 24-36.]
[16] Zhang Z, Zhang Y, Wang W, et al. Universal structure of mesoscale eddies in the ocean[J]. Geophysical Research Letters, 2013, 40(14): 3 677-3 681.
[17] Chang C H, Xie S P, Schneider N, et al. East Pacific ocean eddies and their relationship to subseasonal variability in Central American wind jets[J]. Journal of Geophysical Research Oceans, 2012, 117(C10),doi:10.1029/2011JC007315.
[18] Gaube P, Chelton D B, Samelson R M, et al. Satellite observations of mesoscale eddy-induced Ekman pumping[J]. Journal of Physical Oceanography, 2015, 45(1): 104-132.
[19] Sabu P, George J V, Anilkumar N, et al. Observations of watermass modification by mesoscale eddies in the subtropical frontal region of the Indian ocean sector of southern ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 118(Suppl.1): 152-161.
[20] Lambaerts J, Lapeyre G, Plougonven R, et al. Atmospheric response to sea surface temperature mesoscale structures[J]. Journal of Geophysical Research Atmospheres, 2013, 118(17): 9 611-9 621.
[21] Qiu B, Chen S.Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J]. Journal of Physical Oceanography, 2005, 35(4): 458-473.
[22] Chu X, Xue H, Qi Y, et al. An exceptional anticyclonic eddy in the South China Sea in 2010[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 881-897.
[23] Hausmann U, Czaja A.The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 70(1): 60-72.
[24] Chen G, Hou Y, Chu X.Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): 102-108.
[25] White W B, Annis J L.Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer[J]. Journal of Physical Oceanography, 2003, 33(5): 1 095-1 107.
[26] Haack T, Chelton D, Pullen J, et al. Summertime influence of SST on surface wind stress off the US West Coast from the US Navy COAMPS model[J]. Journal of Physical Oceanography, 2008, 38(11): 2 414-2 437.
[27] Shi Jianxin, Jiang Xiaoping, Jiang Hongfeng, et al. The effect of ocean warm eddy on tropic cyclone intensity[J]. Marine Forecasts,2010, 27(6): 1-4.
[石建新, 蒋小平, 姜洪峰, 等. 海洋中暖涡对热带气旋强度的影响[J]. 海洋预报, 2010, 27(6): 1-4.]
[28] Sweet W, Fett R, Kerling J, et al. Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream[J].Monthly Weather Review, 1981, 109(5): 1 042-1 052.
[29] Mahrt L, Vickers D, Moore E.Flow adjustments across sea-surface temperature changes[J]. Boundary-Layer Meteorology, 2004, 111(3): 553-564.
[30] Tokinaga H, Tanimoto Y, Xie S P, et al. Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations[J]. Journal of Climate, 2009, 22(16): 4 241-4 260.
[31] Nonaka M, Xie S P.Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback[J]. Journal of Climate, 2003, 16(9): 1 404-1 413.
[32] Xie S P.Satellite observations of cool ocean atmosphere interaction[J]. Bulletin of the American Meteorological Society, 2004, 85(2): 195-208.
[33] Zhai X, Greatbatch R J.Surface eddy diffusivity for heat in a model of the northwest Atlantic Ocean[J]. Geophysical Research Letters, 2006, 33(24): 194-199.
[34] Leyba I M, Saraceno M, Solman S A.Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions[J]. Climate Dynamics, 2016: 1-11, doi 10.1007/s00382-016-3460-5.
[35] Bourras D, Reverdin G, Giordani H, et al. Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic[J]. Journal of Geophysical Research, 2004, 109: D18114, doi: 10.1029/2004JD004799.
[36] Villas Bôas A B, Sato O T, Chaigneau A, et al. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean[J]. Geophysical Research Letters, 2015, 42(6): 1 856-1 862.
[37] Thum N, Esbensen S K, Chelton D B, et al. Air-sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific[J]. Journal of Climate, 2002, 15(23): 3 361-3 378.
[38] Frenger I, Gruber N, Knutti R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612.
[39] Rouault M, Verley P, Backeberg B.Wind increase above warm Agulhas Current eddies[J]. Ocean Science Discussions, 2016, 12(2): 495-506.
[40] Bond N A.Observations of planetary boundary-layer structure in the eastern equatorial Pacific[J]. Journal of Climate, 1992, 5(7): 699-706.
[41] Moeng C H, Sullivan P P.A comparison of shear-and buoyancy-driven planetary boundary layer flows[J]. Journal of the Atmospheric Sciences, 1994, 51(7): 999-1 022.
[42] Messager C, Swart S.Significant atmospheric boundary layer change observed above an agulhas current warm cored eddy[J]. Advances in Meteorology, 2016,doi:10.1155/2016/3659657.
[43] Ma Jing, Xu Haiming, Dong Changming.Atmospheric response to mesoscale oceanic eddies over the Kuroshio Extension: Case analyses of warm and cold eddies in winter[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 438-452.
[马静, 徐海明, 董昌明. 大气对黑潮延伸体区中尺度海洋涡旋的响应——冬季暖、冷涡个例分析[J]. 大气科学, 2014, 38(3): 438-452.]
[44] Xie L, Pietrafesa L J, Raman S.Mesoscale air-sea interactions over the continental shelf off the Carolina Coast[J]. The Global Atmosphere and Ocean System, 1996, 4(1): 65-88.
[45] Rouault M, Lutjeharms J R E. Air-sea exchange over an Agulhas eddy at the subtropical convergence[J]. Global Atmosphere & Ocean System, 2000, 7(2):125-150.
[46] Chow C H, Liu Q.Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea[J]. Geophysical Research Letters, 2012, 39(2): L02601, doi: 10.1029/2011GL050230.
[47] Sun S, Fang Y, Liu B.Coupling between SST and wind speed over mesoscale eddies in the South China Sea[J]. Ocean Dynamics, 2016, 66(11): 1 467-1 474.
[48] Seo H, Miller A J, Norris J R.Eddy-wind interaction in the California Current System: Dynamics and impacts[J]. Journal of Physical Oceanography, 2016, 46(2): 439-459.
[49] Jin X, Dong C, Kurian J, et al. SST-wind interaction in coastal upwelling: Oceanic simulation with empirical coupling[J]. Journal of Physical Oceanography, 2009, 39(11): 2 957-2 970.
[50] Byrne D, Papritz L, Frenger I, et al. Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic[J]. Journal of the Atmospheric Sciences, 2015, 72(5): 1 872-1 890.
[51] Chen L, Jia Y, Liu Q.Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region[J]. Journal of Oceanography, 2017, 73(3): 295-307.
[52] Perlin N, Szoeke S P D, Chelton D B, et al. Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations[J]. Monthly Weather Review, 2014, 142(11): 4 284-4 307.
[53] Ma J, Xu H, Dong C, et al. Atmospheric responses to oceanic eddies in the Kuroshio Extension region[J]. Journal of Geophysical Research Atmospheres, 2015, 120(13): 6 313-6 330.
[54] Ma J, Xu H, Dong C.Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension[J]. Tellus A, 2016, 68(1), doi: 10.3402/tellusa.v68.31563.
[55] Wentz F J, Gentemann C, Smith D, et al. Satellite measurements of sea surface temperature through clouds[J]. Science, 2000, 288(5 467): 847-850.
[56] Zhang G J, Mcphaden M J.The relationship between sea surface temperature and latent heat flux in the equatorial Pacific[J]. Journal of Climate, 2014, 8: 589-605.
[57] Putrasahan D A, Miller A J, Seo H.Isolating mesoscale coupled ocean-atmosphere interactions in the Kuroshio extension region[J]. Dynamics of Atmospheres and Oceans, 2013, 63(5): 60-78.
[58] Abel R, Böning C W, Greatbatch R J, et al. Feedback of mesoscale ocean currents on atmospheric winds in high-resolution coupled models and implications for the forcing of ocean-only models[J]. Ocean Science Discussions, 2017, doi: 10.5194/os-2017-24.
[59] Oerder V, Colas F, Echevin V, et al. Mesoscale SST-wind stress coupling in the Peru-Chile current system: Which mechanisms drive its seasonal variability?[J]. Climate Dynamics, 2015, 47(7/8): 2 309-2 330.
[60] Lindzen R S, Nigam S.On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. Journal of the Atmospheric Sciences, 1987, 44(17): 2 418-2 436.
[61] Wai M M K, Stage S A. Dynamical analyses of marine atmospheric boundary layer structure near the Gulf Stream oceanic front[J]. Quarterly Journal of the Royal Meteorological Society, 1989, 115(485): 29-44.
[62] Shimada T, Minobe S.Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data[J]. Geophysical Research Letters, 2011, 38(38): 441-453.
[63] Wallace J M, Mitchell T P, Deser C.The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability[J]. Journal of Climate, 1989, 2(12): 1 492-1 499.
[64] Hayes S P, McPhaden M J, Wallace J M. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability[J]. Journal of Climate, 1989, 2(12): 1 500-1 506.
[65] Samelson R M, Skyllingstad E D, Chelton D B, et al. On the coupling of wind stress and sea surface temperature[J]. Journal of Climate, 2006, 19(8): 1 557-1 566.
[66] Small R J, Xie S P, O’Neill L, et al. Air-sea interaction over ocean fronts and eddies[J]. Dynamics of Atmospheres and Oceans, 2008, 45(3): 274-319.
[67] Small R J, Xie S P, Wang Y.Numerical simulation of atmospheric response to pacific tropical instability waves[J]. Journal of Climate, 2003, 16(22): 3 723-3 741.
[68] Xu Mimi, Xu Haiming, Zhu Suxing.Ocean-to-atmosphere forcing in the vicinity of the sea surface temperature front in East China Sea during spring time and its possible mechanisms[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(6): 1 071-1 087.
[徐蜜蜜, 徐海明, 朱素行. 春季我国东部海洋温度锋区对大气的强迫作用及其机制研究[J]. 大气科学, 2010, 34(6): 1 071-1 087.]
[69] Song Q, Hara T, Cornillon P, et al. A comparison between observations and MM5 simulations of the marine atmospheric boundary layer across a temperature front[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2): 170-178.
[70] Maloney E D, Chelton D B.An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models[J]. Journal of Climate, 2006, 19(12): 2 743-2 762.
[71] Piazza M, Terray L, Boé J, et al. Influence of small-scale North Atlantic Sea surface temperature patterns on the marine boundary layer and free troposphere: A study using the atmospheric ARPEGE model[J]. Climate Dynamics, 2016, 46(5/6): 1 699-1 717.
[72] Zhou G, Latif M, Greatbatch R J, et al. Atmospheric response to the North Pacific enabled by daily sea surface temperature variability[J]. Geophysical Research Letters, 2015, 42(18): 7 732-7 739.
[73] Ma X, Chang P, Saravanan R, et al. Distant influence of Kuroshio eddies on North Pacific weather patterns?[J]. Scientific Reports, 2015, 5, doi: 10.1038/srep17785.
[74] Small R J, Tomas R A, Bryan F O.Storm track response to ocean fronts in a global high-resolution climate model[J]. Climate Dynamics, 2014, 43(3/4): 805-828.
[75] Ma X, Jing Z, Chang P, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere[J]. Nature, 2016, 535(7 613): 533-537.
[76] Ma X, Chang P, Saravanan R, et al. Importance of resolving Kuroshio front and eddy influence in simulating North Pacific Storm Track[J]. Journal of Climate, 2017, 30(5): 1 861-1 880.
[77] Black P G, D’Asaro E A, Drennan W M, et al. Air sea exchange in Hurricanes: Synthesis of observations from the coupled boundary layer air sea transfer experiment[J]. Bulletin of the American Meteorological Society, 2007, 88: 357-374.
[78] D’Asaro E A, Black P G, Centurioni L R, et al. Impact of Typhoons on the ocean in the Pacific[J]. Bulletin of the American Meteorological Society, 2014, 95: 1 405-1 418.
[79] Yang G, Wang F, Li Y, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research Oceans, 2013, 118: 1 906-1 925.
[80] Emanuel K, DesAutels C, Holloway C, et al. Environmental control of tropical cyclone intensity[J]. Journal of the Atmospheric Sciences, 2004, 61(7): 843-858.
[81] Goni G J, Trinanes J A.Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones[J]. Eos, Transactions American Geophysical Union, 2003, 84(51): 573-578.
[82] Scharroo R, Smith W H F, Lillibridge J L. Satellite altimetry and the intensification of Hurricane Katrina[J]. Eos, Transactions American Geophysical Union, 2005, 86(40): 366-366.
[83] Jacob S D, Shay L K.The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study[J]. Journal of Physical Oceanography, 2003, 33(4): 649-676.
[84] Pun I F, Lin I I, Wu C R, et al. Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1 616-1 630.
[85] Lin I I, Chou M D, Wu C C.The impact of a warm ocean eddy on typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling[J]. Terrestrial Atmospheric & Oceanic Sciences, 2012, 22(6): 661-671.
[86] Liu Guangping, Hu Jianyu.Response of the mesoscale eddies to tropical cyclones in the South China Sea[J]. Journal of Oceanography Taiwan Strait, 2009, 28(3): 308-315.
[刘广平, 胡建宇. 南海中尺度涡旋对热带气旋的响应:个例研究[J]. 台湾海峡, 2009, 28(3): 308-315.]
[87] Bender M A, Ginis I, Kurihara Y.Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D12): 23 245-23 263.
[88] Ma Z, Fei J, Liu L, et al. Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air-sea interaction conditions[J]. Monthly Weather Review, 2013, 141(4): 1 285-1 303.
[89] Ali M M, Jagadeesh P S V, Jain S. Effects of eddies on bay of Bengal cyclone intensity[J]. Eos Transactions American Geophysical Union, 2013, 88(8): 93-95.
[90] Bao J W, Wilczak J M, Choi J K, et al. Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development[J]. Monthly Weather Review, 2000, 128(7): 2 190-2 210.
[91] Shay L K, Goni G J, Marks F D, et al. Role of warm ocean features on intensity change: Hurricane Opal. Preprints[C]∥Symposium on Tropical Cyclone Intensity Change. Phoenix, AZ, American Meteorological Society,1998: 131-138.
[92] Hong X, Chang S W, Raman S, et al. The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico[J]. Monthly Weather Review, 2000, 128(5): 1 347-1 365.
[93] Lin I I, Wu C C, Emanuel K A, et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy[J]. Monthly Weather Review, 2005, 133(9): 2 635-2 649.
[94] Yang F, Peng H, Du Y, et al. A GIS study of the influences of warm ocean eddies on the intensity variations of tropical cyclones in the South China Sea[J]. ISPRS International Journal of Geo-Information, 2016, 5(10): 169, doi: 10.3390/ijgi5100169.
[95] Wu C C, Lee C Y, Lin I I.The effect of the ocean eddy on tropical cyclone intensity[J]. Journal of the Atmospheric Sciences, 2007, 64(10): 3 562-3 578.
[1] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[2] 杨韵, 李建平, 谢飞, 冯娟, 孙诚. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
[3] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[4] 李春. “风应力强迫下北太平洋副热带环流与大气环流耦合调整的过程与机理”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1064-1066.
[5] 胡永云. 关于平流层异常影响对流层天气系统的研究进展[J]. 地球科学进展, 2006, 21(7): 713-720.
[6] 吴国雄,李建平,周天军,陆日宇,俞永强,朱江,穆穆,段安民,任荣彩,丁一汇,李维京,何金海,王凡,等. 影响我国短期气候异常的关键区:亚印太交汇区[J]. 地球科学进展, 2006, 21(11): 1109-1118.
[7] 王辉,王东晓,杜岩. 2002年国外物理海洋学研究主要进展[J]. 地球科学进展, 2003, 18(5): 797-805.
[8] 江志红,屠其璞. 国外有关海气系统年代际变率的机制研究[J]. 地球科学进展, 2001, 16(4): 569-573.
[9] 赵永平,陈永利,翁学传. 中纬度海气相互作用研究进展[J]. 地球科学进展, 1997, 12(1): 32-36.
[10] 张人禾. ENSO循环的形成机制及其模拟与预测研究进展[J]. 地球科学进展, 1993, 8(6): 50-56.
[11] 朱复成. 近年来大气科学某些进展及其展望[J]. 地球科学进展, 1992, 7(5): 15-.
[12] 陈烈庭. 海气相互作用[J]. 地球科学进展, 1991, 6(5): 76-77.
阅读次数
全文


摘要