地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 797 -805. doi: 10.11867/j.issn.1001-8166.2003.05.0797

研究论文 上一篇    下一篇

2002年国外物理海洋学研究主要进展
王辉 1,王东晓 2,杜岩 2   
  1. 1.国家自然科学基金委员会地球科学部,北京 100085;2.中国科学院南海海洋研究所热带海洋环境动力学重点实验室,广东 广州 510301
  • 收稿日期:2003-07-23 修回日期:2003-08-01 出版日期:2003-12-20
  • 通讯作者: 王辉 E-mail:wanghui@mail.nsfc.gov.cn
  • 基金资助:

    国家自然科学基金项目“热带太平洋年际与年代际海洋环流变异规律”(编号:40136010);中国科学院知识创新工程重要方向项目“西太平洋暖池动力过程与海气相互作用”(编号:KZCX2-205)资助.

OVERSEAS ADVANCES IN PHYSICAL OCEANOGRAPHY STUDIES IN 2002

Wang Hui 1, Wang DongXiao 2,Du Yan 2   

  1. 1. National Natural Science Foundation of China, Beijing 100085, China;2. LED, South China Sea Institute of Oceanography, CAS, Guangzhou 510301, China
  • Received:2003-07-23 Revised:2003-08-01 Online:2003-12-20 Published:2003-10-01

在技术进步和多学科交叉的推动下,当今的物理海洋学研究已经大大突破传统的研究范畴。与气候变化相联系的缓慢变化海洋物理过程成为现阶段物理海洋学的核心研究内容之一。世界大洋环流研究计划(WOCE)在经过20年实施后于2002年结束,国际上物理海洋学研究又面临一个新的起点。2002年国外物理海洋学的研究涵盖了与大尺度问题相关的许多领域,主要成果体现在:热盐过程和热盐环流变率、海洋混合、年代际与长期海洋变率、印度洋气候变化、海洋盐度与气候变化、古海洋学、海洋模型等方面。

Technological developments and multi-disciplinary intercrosses led the current physical oceanography having a broader connotation than the conventional one. World Ocean Circulation Experiment finished in 2002 after the 20-year on-going with huge output both in bibliography and field observations. Under the development and application of observational techniques, high-tech instruments and numerical methods, ocean regions with rare observation or out of our touch before, such as Indian Ocean, Southern Ocean, polar region, deep ocean ridge, etc., become the new, hot research fields. Studies on those fields reveal a series of scientific issues associated with climate changes, such as strong mixing nearby ocean ridge in the deep water, new processes of the ocean-atmospheres interaction, effects of fresher and lighter water, and so on. Time-dependent oceanic processes associated with climate changes become one of decisive contents in this field. The overseas advances in physical oceanography during 2002 covered many directions related with large scale dynamic processes, including thermohaline circulation, ocean mixing, interdecadal and even long term oceanic variability, Indian ocean climatic variability, ocean salinity vs. climate variability, palaeooceanography, and ocean modeling, etc., which illuminate the future of physical oceanography. It is noticeable that all achievements of those researches were made under a series of international cooperation plans and long term stable financial supports. Scientific foresights and appropriate financial assignments were fundamental to those achievements. So this paper tries to carry a message that any innovative achievements in physical oceanography study in China in the future must depend on the broad cooperation between different disciplines and between different research directions.

中图分类号: 

[1] Clark P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change [J]. Nature, 2002, 415:863-869.

[2] te Raa L A, Dijkstra H A. Instability of the Thermohaline ocean circulation on interdecadal timescales [J]. Journal of Physical Oceanography, 2002, 32: 138-160.

[3] Tziperman E, Gildor H. The stabilization of the Thermohaline circulation by the temperature-precipitation feedback [J]. Journal of Physical Oceanography, 2002, 32: 2 707-2 714.

[4] Haine T W N, Hall T M. A generalized transport theory: Water-mass composition and age [J]. Journal of Physical Oceanography, 2002, 32: 1 932-1 946.

[5] Blanke B, Arhan M, Speich S, et al. Diagnosing and picturing the North Atlantic segment of the global conveyor belt by means of an ocean general circulation model [J]. Journal of Physical Oceanography, 2002, 32: 1 430-1 451.

[6] Huang R X, Jin X. Sea surface elevation and bottom pressure anomalies due to thermohaline forcing. Part I: Isolated perturbations [J]. Journal of Physical Oceanography, 2002, 32: 2 131-2 150.

[7] Heywood K J, Garabato A C N, Stevens D P. High mixing rates in the abyssal Southern Ocean [J]. Nature, 2002, 415: 1 011-1 014.

[8] Hughes C W. An extra dimension to mixing [J]. Nature, 2002, 416: 136-139.

[9] Marshall J, Jones H , Karsten R, et al. Can eddies set ocean stratification? [J]. Journal of Physical Oceanography, 2002, 32: 26-38.

[10] Huang R X, Jin X. Deep circulation in the South Atlantic induced by bottom-intensified mixing over the Midocean ridge [J]. Journal of Physical Oceanography, 2002, 32: 1 150-1 164.

[11] McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean [J]. Nature, 2002, 415: 603-608.

[12] Masuda S. Role of the ocean in the decadal climate change in the North Pacific [J]. Journal of Geophysical Research, 2002,107: 17-18.

[13] Schneider N, Miller A J, Pierce D W. Anatomy of North Pacific decadal variability [J]. Journal of Climate, 2002, 15: 586-605.

[14] Karspeck A, Cane M. Tropical Pacific 1976-1977 climate shift in a linear, wind driven model [J]. Journal of Physical Oceanography, 2002, 32: 2 350-2 360.

[15] Gedalof Z, Mantua N J. A multi-century perspective of variability in the Pacific decadal oscillation: New insights from tree rings and coral [J]. Geophysical Research Letters, 2002, 29(4):2 204-2 210.

[16] Giese B S, Urizar S C, Fuckar N S. Southern hemisphere origins of the 1976 climate shift [J]. Geophysical Research Letters, 2002, 29(1):1-4.

[17] Nonaka M, Xie S P, McCreary J P. Decadal variations in the subtropical cells and equatorial pacific SST [J]. Geophysical Research Letters, 2002, 29(20):1-4.

[18] Visbeck M. The ocean’s role in Atlantic climate variability [J]. Science, 2002, 297: 2 223-2 224.

[19] Dickson R, Yashayaev I, Meincke J, et al. Rapid freshening of the deep North Atlantic Ocean over the past four decades [J]. Nature, 2002, 416: 832-837.

[20] Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean [J]. Science, 2002, 298: 2 171-2 173.

[21] Gille S T. Warming of the Southern Ocean since the 1950s [J]. Science, 2002, 295: 1 275-1 277.

[22] Jacobs S S, Giulivi C F, Mele P A. Freshening of the Ross Sea during the late 20th century [J]. Science, 2002, 297: 386-389.

[23] Yu J Y, Mechoso C R, McWilliams J C, et al. Impacts of the Indian Ocean on the ENSO cycle [J]. Geophysical Research Letters, 2002, 29(8): 461-464.

[24] Watanabe M, Jin F F. Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO [J]. Geophysical Research Letters, 2002, 29(10): 1 161-1 164.

[25] Li T, Zhang Y, Lu E, et al. Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis [J]. Geophysical Research Letters, 2002, 29(23): 251-253.

[26] Xie S P, Annamalai H, Schott F A, et al. Structure and Mechanisms of south Indian Ocean climate variability [J]. Journal of Climate, 2002, 15:864-878.

[27] Schouten M W, de Ruijter W P M, van Leeuwen P J, et al. An oceanic teleconnection between the equatorial and southern Indian Ocean [J]. Geophysical Research Letters, 2002, 29(16): 511-514.

[28] Maes C, McPhaden M J, Behringer D. Signatures of salinity variability in tropical Pacific Ocean dynamics height anomalies [J]. Journal of Geophysical Research, 2002, 107(C12): 8 012-8 017.

[29] Lagerloef G S E. Introduction to the special section: The role of surface salinity on upper ocean dynamics, air-sea interaction and climate [J]. Journal of Geophysical Research, 2002, 107(C12): 8 000.

[30] Delcroix T,McPhaden M. Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992-2000 [J]. Journal of Geophysical Research, 2002, 107(C12):8002.

[31] Johnson E S,Lagerloef G S E, Gunn J T, et al. Surface salinity advection in the tropical oceans compared with atmospheric freshwater forcing: A trial balance [J]. Journal of Geophysical Research, 2002, 107(C12):804.

[32] Adkins J F, McIntyre K, Schrag D P. The Salinity, temperature and 18O of the glacial deep ocean [J]. Science, 2002, 298:1 769-1 773.

[33] Rahmstorf S. Ocean circulation and climate during the past 120 000 years [J]. Nature, 2002, 419: 207-214.

[34] Koutavas A, Lynch-Stieglitz J, Marchitto T M, et al. El Niño-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297: 226-230.

[35] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales [J]. Science, 2002, 297: 222-226. 

[36] Hendy E J, Gagan M K, Alibert C A, et al. Abrupt decrease in tropical Pacific sea surface salinity at end of little ice age [J]. Science, 2002, 295: 1 511-1 514.

[37] Griffies S M, Böning C, Bryan F O, et al. Developments in ocean climate modeling [J]. Ocean Modelling, 2000, (3/4): 123-192.

[38] Bleck R. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates[J]. Ocean Modelling, 2002, 4: 55-88.

[39] Pietrzak J, Jakobson J B, Burchard H, et al. A three-dimensional hydrostatic model for coastal and ocean modeling using a generalized topography following coordinate system [J]. Ocean Modelling, 2002, 4: 173-205.

[40] Luo Y, Guan C, Wu D. An eta-coordinate version of the Princeton Ocean Model [J]. Journal of Oceanography, 2002, 58: 589-597.

[41] Qu T. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait [J]. Acta Oceanologica Sinica, 2002, 21(2): 175-185. 

[42] Shi M, Chen C, Xu Q, et al. The Role of Qiongzhou strait in the seasonal variation of the south China sea circulation [J]. Journal of Physical Oceanography, 2002, 321: 103-121.

[43] Xie S P, Hafner J, Tanimoto Y, et al. Bathymetric effect on the winter sea surface temperature and climate of the Yellow and east China seas [J]. Geophysical Research Letters, 2002, 29(24): 2228.

[44] Chern C S. Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography[J]. Journal of Oceanography, 2002, 58(6): 837-850.

[45] Munk W. Achievements in Physical Oceanography[A]. In: 50 years of ocean discovery, by National Research Council[C]. Washington DC: National Academy Press, 2000.44-50.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要