地球科学进展 ›› 2018, Vol. 33 ›› Issue (8): 808 -817. doi: 10.11867/j.issn.1001-8166.2018.08.0808

综述与评述 上一篇    下一篇

热带北大西洋模态年际变率的研究进展与展望
杨韵( ), 李建平, 谢飞, 冯娟, 孙诚   
  1. 北京师范大学全球变化与地球系统科学研究院,北京 100875
  • 收稿日期:2018-04-08 修回日期:2018-06-14 出版日期:2018-08-10
  • 基金资助:
    国家重点研发计划项目“全球变化及应对”重点专项“全球变暖‘停滞’现象辨识与机理研究”(编号:2016YFA0601803);国家自然科学基金青年科学基金项目“印度洋偶极子年代际变率:ENSO强迫和内部变率”(编号:41606008)资助.

Progresses and Prospects for North Tropical Atlantic Mode Interannual Variability

Yun Yang( ), Jianping Li, Fei Xie, Juan Feng, Cheng Sun   

  1. College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875,China
  • Received:2018-04-08 Revised:2018-06-14 Online:2018-08-10 Published:2018-09-14
  • About author:

    First author:Yang Yun(1988-),female,Anshan City,Liaoning Province,Lecturer. Research areas include ocean-atmosphere interaction and climate change. E-mail:yunyang@bnu.edu.cn

  • Supported by:
    Project supported by the National Key Research and Development Program of China “Research on the global warming hiatus: The impact of ocean dynamics to heat redistribution”(No.2016YFA0601803);The National Natural Science Foundation of China “Indian Ocean Dipole decadal variability: ENSO forcing and internal variability”(No.41606008).

热带北大西洋模态(NTAM)年际变率是北半球春季热带北大西洋的主导变率。它对热带辐合带的南北移动、周边国家的降水以及全球气候都有显著的影响。通过回顾前人的相关研究,归纳了NTAM的几种形成机制,概括了NTAM对气候系统的影响,综述了模式对于NTAM年际变率的模拟能力,总结了以往研究进展中存在的薄弱环节。最后以此为契机,对未来NTAM的研究方向进行了展望。

North Tropical Atlantic Mode (NTAM) is the leading variability of the boreal spring sea surface temperature anomalies over the North Tropical Atlantic at interannual timescale. It is also known as the northern pole of the Atlantic Meridional Mode (AMM). NTAM shows significant impact on the shift of Intertropical Convergence Zone, the precipitation of the surrounding countries, the quasi-biennial oscillation of El Nino-Southern Oscillation (ENSO), and the recent global warming hiatus. Despite its distinct influence on global climate, NTAM has not received equivalent attention as other tropical variability (e.g. ENSO). By revisiting previous studies, this paper summarized the triggers and mechanisms responsible for the evolution and development of NTAM, including remote forcing from ENSO, south tropical Atlantic as well as North Atlantic Oscillation (NAO), local air-sea coupling, and the interactions among different triggers. Also, this paper detailedly introduced the ability of CMIP5 (The fifth phase of the Coupled Model Intercomparison Project) model simulation. The prominent model biases over the equatorial Atlantic significantly limit the study of NTAM. Finally, a future prospective of NTAM interannual variability was presented.

中图分类号: 

图1 HadISST 1870—2017年春季SST
(a)热带大西洋(30°S~30°N, 70°W~20°E) EOF分解的第二模态,黑框代表AMM北部的一支;(b)热带北大西洋(0°~30°N, 100°W~20°E)EOF分解的第一模态,单位为℃;(c)NTAM指数(SST在5°~25°N, 60°~20°W的均值)在不同月份的方差(单位:℃ 2)
Fig.1 HadISST boreal spring SST during 1870-2017
(a) 2 nd EOF mode over the tropical Atlantic (30°S~30°N, 70°W~20°E), the black box represents the northern pole of the AMM;(b) 1 st EOF mode over the northern tropical Atlantic (0°~30°N, 100°W~20°E) (unit: ℃); (c) The variance of NTAM index (SST averaged over 5°~25°N, 60°~20°W) in calendar months (unit: ℃ 2)
图1 HadISST 1870—2017年春季SST
(a)热带大西洋(30°S~30°N, 70°W~20°E) EOF分解的第二模态,黑框代表AMM北部的一支;(b)热带北大西洋(0°~30°N, 100°W~20°E)EOF分解的第一模态,单位为℃;(c)NTAM指数(SST在5°~25°N, 60°~20°W的均值)在不同月份的方差(单位:℃ 2)
Fig.1 HadISST boreal spring SST during 1870-2017
(a) 2 nd EOF mode over the tropical Atlantic (30°S~30°N, 70°W~20°E), the black box represents the northern pole of the AMM;(b) 1 st EOF mode over the northern tropical Atlantic (0°~30°N, 100°W~20°E) (unit: ℃); (c) The variance of NTAM index (SST averaged over 5°~25°N, 60°~20°W) in calendar months (unit: ℃ 2)
图2 NTAM的触发因子示意图
Fig.2 Schematic diagram of NTAM triggers
图2 NTAM的触发因子示意图
Fig.2 Schematic diagram of NTAM triggers
表1 NTAM与其他变率的相关系数
Table 1 Correlation coefficients between NTAM and other variability
表1 NTAM与其他变率的相关系数
Table 1 Correlation coefficients between NTAM and other variability
图3 NTAM的气候影响示意图
Fig.3 Schematic diagrams of NTAM impacts on global climate
图3 NTAM的气候影响示意图
Fig.3 Schematic diagrams of NTAM impacts on global climate
[1] Xie Shangping, Carton J A.Tropical Atlantic Variability: Patterns, Mechanisms, and Impacts on Earth's Climate: The Ocean-Atmosphere Interaction[M]. American Geophysical Union, 2004:121-142.DOI: 10.1029/147GM07.
Xie Shangping, Carton J A.Tropical Atlantic Variability: Patterns, Mechanisms, and Impacts on Earth's Climate: The Ocean-Atmosphere Interaction[M]. American Geophysical Union, 2004:121-142.DOI: 10.1029/147GM07.
[2] Chang Ping, Ji L, Li H.A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions[J]. Nature, 1997, 385(6 616): 516-518.
doi: 10.1038/385516a0     URL    
Chang Ping, Ji L, Li H.A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions[J]. Nature, 1997, 385(6 616): 516-518.
doi: 10.1038/385516a0     URL    
[3] Huang Bohua, Shukla J.Ocean-atmosphere interactions in the tropical and subtropical atlantic ocean[J]. Journal of Climate, 2010, 18(11):1 652-1 672.
doi: 10.1175/JCLI3368.1     URL    
Huang Bohua, Shukla J.Ocean-atmosphere interactions in the tropical and subtropical atlantic ocean[J]. Journal of Climate, 2010, 18(11):1 652-1 672.
doi: 10.1175/JCLI3368.1     URL    
[4] Markham C G, Mclain D R.Sea surface temperature related to rain in Cear|[aacute]|, North-Eastern Brazil[J]. Nature, 1977, 265(5 592):320-323.
doi: 10.1038/265320a0     URL    
Markham C G, Mclain D R.Sea surface temperature related to rain in Cear|[aacute]|, North-Eastern Brazil[J]. Nature, 1977, 265(5 592):320-323.
doi: 10.1038/265320a0     URL    
[5] Hastenrath S, Heller L.Dynamics of climatic hazards in Northeast Brazil[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(435):77-92.
doi: 10.1002/qj.49710343505     URL    
Hastenrath S, Heller L.Dynamics of climatic hazards in Northeast Brazil[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(435):77-92.
doi: 10.1002/qj.49710343505     URL    
[6] Hastenrath S.Interannual variability and annual cycle: Mechanisms of circulation and climate in the tropical atlantic sector[J]. Monthly Weather Review, 1984, 112(6):1 097-1 107.
doi: 10.1175/1520-0493(1984)112<1097:IVAACM>2.0.CO;2     URL    
Hastenrath S.Interannual variability and annual cycle: Mechanisms of circulation and climate in the tropical atlantic sector[J]. Monthly Weather Review, 1984, 112(6):1 097-1 107.
doi: 10.1175/1520-0493(1984)112<1097:IVAACM>2.0.CO;2     URL    
[7] Hastenrath S.Exploring the climate problems of Brazil's Nordeste: A review[J]. Climatic Change, 2012, 112(2):243-251.
doi: 10.1007/s10584-011-0227-1     URL    
Hastenrath S.Exploring the climate problems of Brazil's Nordeste: A review[J]. Climatic Change, 2012, 112(2):243-251.
doi: 10.1007/s10584-011-0227-1     URL    
[8] Xie Lian, Yan Tingzhuang, Pietrafesa L J, et al. Climatology and interannual variability of North Atlantic hurricane tracks[J]. Journal of Climate, 2005, 18(24):5 370-5 381.
doi: 10.1175/JCLI3560.1     URL    
Xie Lian, Yan Tingzhuang, Pietrafesa L J, et al. Climatology and interannual variability of North Atlantic hurricane tracks[J]. Journal of Climate, 2005, 18(24):5 370-5 381.
doi: 10.1175/JCLI3560.1     URL    
[9] Vimont D J, Kossin J P.The Atlantic Meridional Mode and hurricane activity[J]. Geophysical Research Letters, 2007, 34(7):248-265.
doi: 10.1029/2007GL029683     URL    
Vimont D J, Kossin J P.The Atlantic Meridional Mode and hurricane activity[J]. Geophysical Research Letters, 2007, 34(7):248-265.
doi: 10.1029/2007GL029683     URL    
[10] Vimont D J.Analysis of the atlantic meridional mode using linear inverse modeling: Seasonality and regional influences[J]. Journal of Climate, 2012, 25(4):1 194-1 212.
doi: 10.1175/JCLI-D-11-00012.1     URL    
Vimont D J.Analysis of the atlantic meridional mode using linear inverse modeling: Seasonality and regional influences[J]. Journal of Climate, 2012, 25(4):1 194-1 212.
doi: 10.1175/JCLI-D-11-00012.1     URL    
[11] Wu Lixin, He Feng, Liu Zhengyu, et al. Atmospheric teleconnections of tropical atlantic nariability: Interhemispheric, tropical extratropical, and cross-basin interactions[J]. Journal of Climate, 2007, 20(20):856-870.
doi: 10.1175/JCLI4019.1     URL    
Wu Lixin, He Feng, Liu Zhengyu, et al. Atmospheric teleconnections of tropical atlantic nariability: Interhemispheric, tropical extratropical, and cross-basin interactions[J]. Journal of Climate, 2007, 20(20):856-870.
doi: 10.1175/JCLI4019.1     URL    
[12] Ham Y G, Kug J S, Park J Y, et al. Sea surface temperature in the north tropical Atlantic as a trigger for El Ni?o/Southern Oscillation events[J]. Nature Geoscience, 2013, 6(2):112-116.
doi: 10.1038/ngeo1686     URL    
Ham Y G, Kug J S, Park J Y, et al. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events[J]. Nature Geoscience, 2013, 6(2):112-116.
doi: 10.1038/ngeo1686     URL    
[13] Yu Jinhua, Li T, Tan Zhemin, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dynamics, 2016, 46(3/4):1-13.
doi: 10.1007/s00382-015-2562-9     URL    
Yu Jinhua, Li T, Tan Zhemin, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dynamics, 2016, 46(3/4):1-13.
doi: 10.1007/s00382-015-2562-9     URL    
[14] Lin Xiaopei, Xu Lixiao, Li Jianping, et al. Research on the global warming hiatus[J]. Advances in Earth Science, 2016, 31(10): 995-1 000.
doi: 10.11867/j.issn.1001-8166.2016.10.0995.    
Lin Xiaopei, Xu Lixiao, Li Jianping, et al. Research on the global warming hiatus[J]. Advances in Earth Science, 2016, 31(10): 995-1 000.
[林霄沛, 许丽晓, 李建平, 等. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1 000.]
doi: 10.11867/j.issn.1001-8166.2016.10.0995.    
[林霄沛, 许丽晓, 李建平, 等. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1 000.]
doi: 10.11867/j.issn.1001-8166.2016.10.0995.    
[15] Chikamoto Y, Timmermann A, Luo J J, et al. Skilful multi-year predictions of tropical trans-basin climate variability[J]. Nature Communications, 2015, 6:6 869.
doi: 10.1038/ncomms7869     URL     pmid: 25897996
Chikamoto Y, Timmermann A, Luo J J, et al. Skilful multi-year predictions of tropical trans-basin climate variability[J]. Nature Communications, 2015, 6:6 869.
doi: 10.1038/ncomms7869     URL     pmid: 25897996
[16] Li Xichen, Xie Shangping, Gille S T, et al. Atlantic-induced pan-tropical climate change over the past three decades[J]. Nature Climate Change, 2016, 6(3):275-279.
doi: 10.1038/nclimate2840     URL    
Li Xichen, Xie Shangping, Gille S T, et al. Atlantic-induced pan-tropical climate change over the past three decades[J]. Nature Climate Change, 2016, 6(3):275-279.
doi: 10.1038/nclimate2840     URL    
[17] Xie Shangping, Philander S G H. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific[J]. Tellus, 1994, 46(4):340-350.
doi: 10.3402/tellusa.v46i4.15484     URL    
Xie Shangping, Philander S G H. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific[J]. Tellus, 1994, 46(4):340-350.
doi: 10.3402/tellusa.v46i4.15484     URL    
[18] Wu Lixin, Zhang Qiong, Liu Zhengyu.Toward understanding tropical Atlantic variability using coupled modeling surgery[M]∥Earth's Climate: The Ocean-Atmosphere Interaction. American Geophysical Union, 2004:157-170.
Wu Lixin, Zhang Qiong, Liu Zhengyu.Toward understanding tropical Atlantic variability using coupled modeling surgery[M]∥Earth's Climate: The Ocean-Atmosphere Interaction. American Geophysical Union, 2004:157-170.
[19] Chiang J C H, Sobel A H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate[J]. Journal of Climate, 2002, 15(18):2 616-2 631.
doi: 10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2     URL    
Chiang J C H, Sobel A H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate[J]. Journal of Climate, 2002, 15(18):2 616-2 631.
doi: 10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2     URL    
[20] Mahajan S, Saravanan R, Chang P.Free and forced variability of the tropical Atlantic Ocean: Role of the wind-evaporation-sea surface temperature feedback[J]. Journal of Climate, 2010, 23(23):5 958-5 977.
doi: 10.1175/2010JCLI3304.1     URL    
Mahajan S, Saravanan R, Chang P.Free and forced variability of the tropical Atlantic Ocean: Role of the wind-evaporation-sea surface temperature feedback[J]. Journal of Climate, 2010, 23(23):5 958-5 977.
doi: 10.1175/2010JCLI3304.1     URL    
[21] Xie Shangping.A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability[J]. Journal of Climate, 1999, 12(12):64-70.
doi: 10.1175/1520-0442-12.1.64     URL    
Xie Shangping.A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability[J]. Journal of Climate, 1999, 12(12):64-70.
doi: 10.1175/1520-0442-12.1.64     URL    
[22] Chang Ping, Ji L, Saravanan R.A hybrid coupled model study of tropical Atlantic variability[J]. Journal of Climate, 2001, 14(3):361-390.
doi: 10.1175/1520-0442(2001)013<0361:AHCMSO>2.0.CO;2     URL    
Chang Ping, Ji L, Saravanan R.A hybrid coupled model study of tropical Atlantic variability[J]. Journal of Climate, 2001, 14(3):361-390.
doi: 10.1175/1520-0442(2001)013<0361:AHCMSO>2.0.CO;2     URL    
[23] Czaja A, Van Der Vaart P, Marshall J. A diagnostic study of the role of remote forcing in Tropical Atlantic variability[J]. Journal of Climate, 2002, 15(22):3 280-3 290.
doi: 10.1175/1520-0442(2002)0152.0.CO;2     URL    
Czaja A, Van Der Vaart P, Marshall J. A diagnostic study of the role of remote forcing in Tropical Atlantic variability[J]. Journal of Climate, 2002, 15(22):3 280-3 290.
doi: 10.1175/1520-0442(2002)0152.0.CO;2     URL    
[24] Yang Y, Xie S P, Wu L, et al. Causes of enhanced SST variability over the equatorial Atlantic and its relationship to the Atlantic zonal mode in CMIP5[J]. Journal of Climate, 2017, 30(16): 6 171-6 182.
doi: 10.1175/JCLI-D-16-0866.1     URL    
Yang Y, Xie S P, Wu L, et al. Causes of enhanced SST variability over the equatorial Atlantic and its relationship to the Atlantic zonal mode in CMIP5[J]. Journal of Climate, 2017, 30(16): 6 171-6 182.
doi: 10.1175/JCLI-D-16-0866.1     URL    
[25] Amaya D J, Deflorio M J, Miller A J, et al. WES feedback and the Atlantic Meridional Mode: Observations and CMIP5 comparisons[J]. Climate Dynamics, 2017,49(5/6):1 665-1 679.
doi: 10.1007/s00382-016-3411-1     URL    
Amaya D J, Deflorio M J, Miller A J, et al. WES feedback and the Atlantic Meridional Mode: Observations and CMIP5 comparisons[J]. Climate Dynamics, 2017,49(5/6):1 665-1 679.
doi: 10.1007/s00382-016-3411-1     URL    
[26] Doi T, Tozuka T, Yamagata T.The Atlantic meridional mode and its coupled variability with the Guinea Dome[J]. Journal of Climate, 2010, 23(2):455.
doi: 10.1175/2009JCLI3198.1     URL    
Doi T, Tozuka T, Yamagata T.The Atlantic meridional mode and its coupled variability with the Guinea Dome[J]. Journal of Climate, 2010, 23(2):455.
doi: 10.1175/2009JCLI3198.1     URL    
[27] Doi T, Tozuka T, Yamagata T.Interannual variability of the Guinea Dome and its possible link with the Atlantic Meridional Mode[J]. Climate Dynamics, 2009, 33(7/8):985-998.
doi: 10.1007/s00382-009-0574-z     URL    
Doi T, Tozuka T, Yamagata T.Interannual variability of the Guinea Dome and its possible link with the Atlantic Meridional Mode[J]. Climate Dynamics, 2009, 33(7/8):985-998.
doi: 10.1007/s00382-009-0574-z     URL    
[28] Rossignol M, Meyrueis A M.Campagnes oceanographiques du Gerad-Treca, Cent. Oceanogr[M]. Dakar, Senegal: Dakar-Thiaroye, ORSTOM, 1964: 53.
Rossignol M, Meyrueis A M.Campagnes oceanographiques du Gerad-Treca, Cent. Oceanogr[M]. Dakar, Senegal: Dakar-Thiaroye, ORSTOM, 1964: 53.
[29] Oettli P, Yushi M, Toshio Y.A regional climate mode discovered in the North Atlantic: Dakar Ni?o/Ni?a[J]. Scientific Reports, 2016, 6:18 782.
doi: 10.1038/srep18782     URL     pmid: 4704055
Oettli P, Yushi M, Toshio Y.A regional climate mode discovered in the North Atlantic: Dakar Niño/Niña[J]. Scientific Reports, 2016, 6:18 782.
doi: 10.1038/srep18782     URL     pmid: 4704055
[30] Enfield D B.Tropical Atlantic SST variability and its relation to El Ni?o-Southern Oscillation[J]. Journal of Geophysical Research: Oceans Banner, 1997, 102(C1):929-945.
Enfield D B.Tropical Atlantic SST variability and its relation to El Niño-Southern Oscillation[J]. Journal of Geophysical Research: Oceans Banner, 1997, 102(C1):929-945.
[31] Giannini A, Kushnir Y, Cane M A.Interannual variability of caribbean rainfall, ENSO, and the Atlantic Ocean[J]. Journal of Climate, 2000, 13(13):297-311.
doi: 10.1175/1520-0442(2000)0132.0.CO;2     URL    
Giannini A, Kushnir Y, Cane M A.Interannual variability of caribbean rainfall, ENSO, and the Atlantic Ocean[J]. Journal of Climate, 2000, 13(13):297-311.
doi: 10.1175/1520-0442(2000)0132.0.CO;2     URL    
[32] Huang Bohua.Remotely forced variability in the tropical Atlantic Ocean[J]. Climate Dynamics, 2004, 23(2):133-152.
doi: 10.1007/s00382-004-0443-8     URL    
Huang Bohua.Remotely forced variability in the tropical Atlantic Ocean[J]. Climate Dynamics, 2004, 23(2):133-152.
doi: 10.1007/s00382-004-0443-8     URL    
[33] Amaya D J, Foltz G R.Impacts of canonical and Modoki El Ni?o on tropical Atlantic SST[J]. Journal of Geophysical Research Oceans, 2014, 119(2):777-789.
doi: 10.1002/2013JC009476     URL    
Amaya D J, Foltz G R.Impacts of canonical and Modoki El Niño on tropical Atlantic SST[J]. Journal of Geophysical Research Oceans, 2014, 119(2):777-789.
doi: 10.1002/2013JC009476     URL    
[34] Chang Ping, Fang Y, Saravanan R, et al. The cause of the fragile relationship between the Pacific El Ni?o and the Atlantic Ni?o[J]. Nature, 2006, 443(7 109): 324-328.
doi: 10.1038/nature05053     URL    
Chang Ping, Fang Y, Saravanan R, et al. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño[J]. Nature, 2006, 443(7 109): 324-328.
doi: 10.1038/nature05053     URL    
[35] Gill A E.Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(449):447-462.
doi: 10.1002/qj.49710644905     URL    
Gill A E.Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(449):447-462.
doi: 10.1002/qj.49710644905     URL    
[36] Saravanan R, Chang P.Interaction between Tropical Atlantic variability and El Ni?o-Southern Oscillation[J]. Journal of Climate, 2000, 13(D14):2 177-2 194.
doi: 10.1175/1520-0442(2000)013&lt;2177:IBTAVA&gt;2.0.CO;2     URL    
Saravanan R, Chang P.Interaction between Tropical Atlantic variability and El Niño-Southern Oscillation[J]. Journal of Climate, 2000, 13(D14):2 177-2 194.
doi: 10.1175/1520-0442(2000)013&lt;2177:IBTAVA&gt;2.0.CO;2     URL    
[37] Chikamoto Y.Tropical Atlantic Ocean-Atmospheric Response to Tropical Pacific SST Variations[D]. Sapporo, Japan: Hokkaido University, 2002.
Chikamoto Y.Tropical Atlantic Ocean-Atmospheric Response to Tropical Pacific SST Variations[D]. Sapporo, Japan: Hokkaido University, 2002.
[38] Klein S A.Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge[J]. Journal of Climate, 1999, 12(12):917-932.
doi: 10.1175/1520-0442(1999)012&lt;0917:RSSTVD&gt;2.0.CO;2     URL    
Klein S A.Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge[J]. Journal of Climate, 1999, 12(12):917-932.
doi: 10.1175/1520-0442(1999)012&lt;0917:RSSTVD&gt;2.0.CO;2     URL    
[39] Wang Chunzai.ENSO, Atlantic climate variability, and the walker and hadley circulations[M]∥The Hadley Circulation: Present, Past and Future Netherlands. Springer Netherlands, 2004:173-202.
Wang Chunzai.ENSO, Atlantic climate variability, and the walker and hadley circulations[M]∥The Hadley Circulation: Present, Past and Future Netherlands. Springer Netherlands, 2004:173-202.
[40] García-Serrano J, Cassou C, Douville H, et al. Revisiting the ENSO teleconnection to the tropical North Atlantic[J]. Journal of Climate, 2017, 30(17).DOI:10.1175/JCLI-D-16-0641.
doi: 10.1175/JCLI-D-16-0641.1     URL    
García-Serrano J, Cassou C, Douville H, et al. Revisiting the ENSO teleconnection to the tropical North Atlantic[J]. Journal of Climate, 2017, 30(17).DOI:10.1175/JCLI-D-16-0641.
doi: 10.1175/JCLI-D-16-0641.1     URL    
[41] Giannini A, Chiang J C H, Cane M A, et al. The ENSO teleconnection to the Tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the Tropical Americas[J]. Journal of Climate, 2001, 14(24):4 530-4 544.
doi: 10.1175/1520-0442(2001)014&lt;4530:TETTTT&gt;2.0.CO;2     URL    
Giannini A, Chiang J C H, Cane M A, et al. The ENSO teleconnection to the Tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the Tropical Americas[J]. Journal of Climate, 2001, 14(24):4 530-4 544.
doi: 10.1175/1520-0442(2001)014&lt;4530:TETTTT&gt;2.0.CO;2     URL    
[42] Lee S, Enfield D B, Wang C.Why do some El Ni?os have no impact on tropical North Atlantic SST?[J]. Geophysical Research Letters, 2008, 35:537-537.
doi: 10.1029/2008GL034734     URL    
Lee S, Enfield D B, Wang C.Why do some El Niños have no impact on tropical North Atlantic SST?[J]. Geophysical Research Letters, 2008, 35:537-537.
doi: 10.1029/2008GL034734     URL    
[43] Yeh S W, Kug J S, Dewitte B, et al. El Ni?o in a changing climate[J]. Nature, 2009, 461: 511-514. DOI:10.1038/nature08316.
doi: 10.1038/nature08316     URL    
Yeh S W, Kug J S, Dewitte B, et al. El Niño in a changing climate[J]. Nature, 2009, 461: 511-514. DOI:10.1038/nature08316.
doi: 10.1038/nature08316     URL    
[44] Ashok K, Behera S K, Rao S A, et al. El Ni?o Modoki and its possible teleconnection[J]. Journal of Geophysical Research Oceans, 2007, 112(C11):C11007.DOI:10.1029/2006JC003798.
doi: 10.1029/2006JC003798     URL    
Ashok K, Behera S K, Rao S A, et al. El Niño Modoki and its possible teleconnection[J]. Journal of Geophysical Research Oceans, 2007, 112(C11):C11007.DOI:10.1029/2006JC003798.
doi: 10.1029/2006JC003798     URL    
[45] Kug J S, Jin Feifei, An S I.Two types of El Ni?o events: Cold Tongue El Ni?o and Warm Pool El Ni?o[J]. Journal of Climate, 2009, 22(22):1 499-1 515.
doi: 10.1175/2008JCLI2624.1     URL    
Kug J S, Jin Feifei, An S I.Two types of El Niño events: Cold Tongue El Niño and Warm Pool El Niño[J]. Journal of Climate, 2009, 22(22):1 499-1 515.
doi: 10.1175/2008JCLI2624.1     URL    
[46] Mcphaden M J, Lee T, Mcclurg D.El Ni?o and its relationship to changing background conditions in the tropical Pacific Ocean[J]. Geophysical Research Letters, 2011, 38(15):175-188.
Mcphaden M J, Lee T, Mcclurg D.El Niño and its relationship to changing background conditions in the tropical Pacific Ocean[J]. Geophysical Research Letters, 2011, 38(15):175-188.
[47] Yeh S, Kirtman B P, Kug J, et al. Natural variability of the central Pacific El Ni?o event on multi-centennial timescales[J]. Geophysical Research Letters, 2011, 38(2):79-89.
Yeh S, Kirtman B P, Kug J, et al. Natural variability of the central Pacific El Niño event on multi-centennial timescales[J]. Geophysical Research Letters, 2011, 38(2):79-89.
[48] Nobre P, Srukla J.Variations of sea surface temperature, wind stress, and rainfall over the Tropical Atlantic and South America[J]. Journal of Climate, 1996, 18(1):73-84.
Nobre P, Srukla J.Variations of sea surface temperature, wind stress, and rainfall over the Tropical Atlantic and South America[J]. Journal of Climate, 1996, 18(1):73-84.
[49] Ruizbarradas A, Carton J A, Nigam S.Structure of interannual-to-decadal climate variability in the Tropical Atlantic Sector[J]. Journal of Climate, 2000, 13(18):3 285-3 297.
doi: 10.1175/1520-0442(2000)0132.0.CO;2     URL    
Ruizbarradas A, Carton J A, Nigam S.Structure of interannual-to-decadal climate variability in the Tropical Atlantic Sector[J]. Journal of Climate, 2000, 13(18):3 285-3 297.
doi: 10.1175/1520-0442(2000)0132.0.CO;2     URL    
[50] Houghton R W, Tourre Y M.Characteristics of low-frequency sea surface temperature fluctuations in the Tropical Atlantic[J]. Journal of Climate, 1992, 5(7):765-772.
doi: 10.1175/1520-0442(1992)005<0765:COLFSS>2.0.CO;2     URL    
Houghton R W, Tourre Y M.Characteristics of low-frequency sea surface temperature fluctuations in the Tropical Atlantic[J]. Journal of Climate, 1992, 5(7):765-772.
doi: 10.1175/1520-0442(1992)005<0765:COLFSS>2.0.CO;2     URL    
[51] Mehta V M.Variability of the tropical ocean surface temperatures at decadal-multidecadal time scales. Part I: The Atlantic Ocean[J]. Journal of Climate, 1998,11(9): 2 351-2 375.
doi: 10.1175/1520-0442(1998)011&lt;2351:VOTTOS&gt;2.0.CO;2     URL    
Mehta V M.Variability of the tropical ocean surface temperatures at decadal-multidecadal time scales. Part I: The Atlantic Ocean[J]. Journal of Climate, 1998,11(9): 2 351-2 375.
doi: 10.1175/1520-0442(1998)011&lt;2351:VOTTOS&gt;2.0.CO;2     URL    
[52] Mehta V M, Delworth T.Decadal variability of the Tropical Atlantic Ocean surface temperature in shipboard measurements and in a Global Ocean-Atmosphere Model[J]. Journal of Climate, 1995, 8(8):172-190.
doi: 10.1175/1520-0442(1995)008&lt;0172:DVOTTA&gt;2.0.CO;2     URL    
Mehta V M, Delworth T.Decadal variability of the Tropical Atlantic Ocean surface temperature in shipboard measurements and in a Global Ocean-Atmosphere Model[J]. Journal of Climate, 1995, 8(8):172-190.
doi: 10.1175/1520-0442(1995)008&lt;0172:DVOTTA&gt;2.0.CO;2     URL    
[53] Enfield D B, Mestas-Nu?ez A M, Mayer D A, et al. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?[J]. Journal of Geophysical Research, 1999, 104:7 841-7 848.
doi: 10.1029/1998JC900109     URL    
Enfield D B, Mestas-Nuñez A M, Mayer D A, et al. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?[J]. Journal of Geophysical Research, 1999, 104:7 841-7 848.
doi: 10.1029/1998JC900109     URL    
[54] Marshall J, Kushnir Y, Battisti D, et al. North Atlantic climate variability: Phenomena, impacts and mechanisms[J]. International Journal of Climatology, 2001, 21(15):1 863-1 898.
doi: 10.1002/(ISSN)1097-0088     URL    
Marshall J, Kushnir Y, Battisti D, et al. North Atlantic climate variability: Phenomena, impacts and mechanisms[J]. International Journal of Climatology, 2001, 21(15):1 863-1 898.
doi: 10.1002/(ISSN)1097-0088     URL    
[55] Yao Yao, Luo Dehai.The North Atlantic Oscillation (NAO) and Europe Blocking and their impacts on extreme snowstorms: A review[J]. Advances in Earth Science, 2016, 31(6): 581-594.
doi: 10.11867/j.issn.1001-8166.2016.06.0581     URL    
Yao Yao, Luo Dehai.The North Atlantic Oscillation (NAO) and Europe Blocking and their impacts on extreme snowstorms: A review[J]. Advances in Earth Science, 2016, 31(6): 581-594.
[姚遥, 罗德海. 北大西洋涛动—欧洲阻塞及其对极端暴雪影响的研究进展[J]. 地球科学进展, 2016, 31(6): 581-594.]
doi: 10.11867/j.issn.1001-8166.2016.06.0581     URL    
[姚遥, 罗德海. 北大西洋涛动—欧洲阻塞及其对极端暴雪影响的研究进展[J]. 地球科学进展, 2016, 31(6): 581-594.]
doi: 10.11867/j.issn.1001-8166.2016.06.0581     URL    
[56] Wu Lixin, Liu Zhengyu.North Atlantic decadal variability: Air-sea coupling, oceanic memory, and potential Northern Hemisphere resonance[J]. Journal of Climate, 2005, 18(2):331-349.
doi: 10.1175/JCLI-3264.1     URL    
Wu Lixin, Liu Zhengyu.North Atlantic decadal variability: Air-sea coupling, oceanic memory, and potential Northern Hemisphere resonance[J]. Journal of Climate, 2005, 18(2):331-349.
doi: 10.1175/JCLI-3264.1     URL    
[57] Yang Yun, Wu Lixin, Fang Changfang.Will global warming Suppress North Atlantic Tripole decadal variability?[J]. Journal of Climate, 2012, 25(6):2 040-2 055.
doi: 10.1175/JCLI-D-11-00164.1     URL    
Yang Yun, Wu Lixin, Fang Changfang.Will global warming Suppress North Atlantic Tripole decadal variability?[J]. Journal of Climate, 2012, 25(6):2 040-2 055.
doi: 10.1175/JCLI-D-11-00164.1     URL    
[58] Czaja A, Robertson A W, Huck T.The role of Atlantic Ocean-atmosphere coupling in affecting North Atlantic oscillation variability[J]. North Atlantic Oscillation Climatic Significance & Environmental Impact, 2003, 134:147-172.
Czaja A, Robertson A W, Huck T.The role of Atlantic Ocean-atmosphere coupling in affecting North Atlantic oscillation variability[J]. North Atlantic Oscillation Climatic Significance & Environmental Impact, 2003, 134:147-172.
[59] Robinson W A, Li Shuanglin, Peng S.Dynamical nonlinearity in the atmospheric response to Atlantic sea surface temperature anomalies[J]. Geophysical Research Letters, 2003, 30(20):315-331.
doi: 10.1029/2003GL018416     URL    
Robinson W A, Li Shuanglin, Peng S.Dynamical nonlinearity in the atmospheric response to Atlantic sea surface temperature anomalies[J]. Geophysical Research Letters, 2003, 30(20):315-331.
doi: 10.1029/2003GL018416     URL    
[60] Yang Yun, Wu Lixin.Changes of air-sea coupling in the North Atlantic over the 20th century[J]. Advances in Atmospheric Sciences, 2015, 32(4):445-456.
doi: 10.1007/s00376-014-4090-7     URL    
Yang Yun, Wu Lixin.Changes of air-sea coupling in the North Atlantic over the 20th century[J]. Advances in Atmospheric Sciences, 2015, 32(4):445-456.
doi: 10.1007/s00376-014-4090-7     URL    
[61] Servain J, Wainer I, Jr M C, et al. Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic[J]. Geophysical Research Letters, 1999, 26(4):485-488.
doi: 10.1029/1999GL900014     URL    
Servain J, Wainer I, Jr M C, et al. Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic[J]. Geophysical Research Letters, 1999, 26(4):485-488.
doi: 10.1029/1999GL900014     URL    
[62] Foltz G R, Mcphaden M J.Abrupt equatorial wave-induced cooling of the Atlantic cold tongue in 2009[J]. Geophysical Research Letters, 2010, 37(24):701-719.
doi: 10.1029/2010GL045522     URL    
Foltz G R, Mcphaden M J.Abrupt equatorial wave-induced cooling of the Atlantic cold tongue in 2009[J]. Geophysical Research Letters, 2010, 37(24):701-719.
doi: 10.1029/2010GL045522     URL    
[63] Foltz Gregory R, McPhaden Michael J. Interaction between the Atlantic meridional and Ni?o modes[J]. Geophysical Research Letters, 2010, 37:44 727-44 734.
Foltz Gregory R, McPhaden Michael J. Interaction between the Atlantic meridional and Niño modes[J]. Geophysical Research Letters, 2010, 37:44 727-44 734.
[64] Richter I, Behera S K, Masumoto Y, et al. Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean[J]. Nature Geoscience, 2013, 6(1):43-47.
doi: 10.1038/ngeo1660     URL    
Richter I, Behera S K, Masumoto Y, et al. Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean[J]. Nature Geoscience, 2013, 6(1):43-47.
doi: 10.1038/ngeo1660     URL    
[65] Namias J.Influence of northern hemisphere general circulation on drought in northeast Brazil1[J]. Tellus, 1972, 24(4):336-343.
doi: 10.1111/j.2153-3490.1972.tb01561.x     URL    
Namias J.Influence of northern hemisphere general circulation on drought in northeast Brazil1[J]. Tellus, 1972, 24(4):336-343.
doi: 10.1111/j.2153-3490.1972.tb01561.x     URL    
[66] Marengo J A, Torres R R, Alves L M.Drought in Northeast Brazil—Past, present, and future[J]. Theoretical & Applied Climatology, 2017, 129:1-12.
doi: 10.1007/s00704-016-1840-8     URL    
Marengo J A, Torres R R, Alves L M.Drought in Northeast Brazil—Past, present, and future[J]. Theoretical & Applied Climatology, 2017, 129:1-12.
doi: 10.1007/s00704-016-1840-8     URL    
[67] Rao V B, Hada K, Herdies D L.On the severe drought of 1993 in north-east Brazil[J]. International Journal of Climatology, 1995, 15(6):697-704.
doi: 10.1002/joc.3370150608     URL    
Rao V B, Hada K, Herdies D L.On the severe drought of 1993 in north-east Brazil[J]. International Journal of Climatology, 1995, 15(6):697-704.
doi: 10.1002/joc.3370150608     URL    
[68] Foltz G R, Mcphaden M J, Lumpkin R.A strong Atlantic Meridional Mode Event in 2009: The role of Mixed Layer dynamics[J]. Journal of Climate, 2011, 25(1):363-380.
doi: 10.1175/JCLI-D-11-00150.1     URL    
Foltz G R, Mcphaden M J, Lumpkin R.A strong Atlantic Meridional Mode Event in 2009: The role of Mixed Layer dynamics[J]. Journal of Climate, 2011, 25(1):363-380.
doi: 10.1175/JCLI-D-11-00150.1     URL    
[69] Folland C K, Palmer T N, Parker D E.Sahel rainfall and worldwide sea temperatures, 1901-85[J]. Nature, 1986, 320(6 063):602-607.
doi: 10.1038/320602a0     URL    
Folland C K, Palmer T N, Parker D E.Sahel rainfall and worldwide sea temperatures, 1901-85[J]. Nature, 1986, 320(6 063):602-607.
doi: 10.1038/320602a0     URL    
[70] Lamb P J, Peppler R A.Further case studies of Tropical Atlantic surface atmospheric and oceanic patterns associated with Sub-Saharan Drought[J]. Journal of Climate, 1992, 5(5):476-488.
doi: 10.1175/1520-0442(1992)005&lt;0476:FCSOTA&gt;2.0.CO;2     URL    
Lamb P J, Peppler R A.Further case studies of Tropical Atlantic surface atmospheric and oceanic patterns associated with Sub-Saharan Drought[J]. Journal of Climate, 1992, 5(5):476-488.
doi: 10.1175/1520-0442(1992)005&lt;0476:FCSOTA&gt;2.0.CO;2     URL    
[71] Miles M K, Follard C K.Changes in the latitude of the climatic zones of the Northern Hemisphere[J]. Nature, 1974, 252(5 484):616.
doi: 10.1038/252616a0     URL    
Miles M K, Follard C K.Changes in the latitude of the climatic zones of the Northern Hemisphere[J]. Nature, 1974, 252(5 484):616.
doi: 10.1038/252616a0     URL    
[72] Yu K, Xie Shangping.The tropical Pacific as a key pacemaker of the variable rates of global warming[J]. Nature Geoscience, 2016, 9(9):669-673.
doi: 10.1038/ngeo2770     URL    
Yu K, Xie Shangping.The tropical Pacific as a key pacemaker of the variable rates of global warming[J]. Nature Geoscience, 2016, 9(9):669-673.
doi: 10.1038/ngeo2770     URL    
[73] Holland P R, Kwok R.Wind-driven trends in Antarctic sea-ice drift[J]. Nature Geoscience, 2012, 5(12):872-875.
doi: 10.1038/ngeo1627     URL    
Holland P R, Kwok R.Wind-driven trends in Antarctic sea-ice drift[J]. Nature Geoscience, 2012, 5(12):872-875.
doi: 10.1038/ngeo1627     URL    
[74] Turner J, Comiso J.Solve Antarctica's sea-ice puzzle[J]. Nature, 2017, 547(7 663):275.
doi: 10.1038/547275a     URL     pmid: 28726837
Turner J, Comiso J.Solve Antarctica's sea-ice puzzle[J]. Nature, 2017, 547(7 663):275.
doi: 10.1038/547275a     URL     pmid: 28726837
[75] Li Xichen, Holland D M, Gerber E P, et al. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice[J]. Nature, 2014, 505(7 484):538-542.
doi: 10.1038/nature12945     URL     pmid: 2020
Li Xichen, Holland D M, Gerber E P, et al. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice[J]. Nature, 2014, 505(7 484):538-542.
doi: 10.1038/nature12945     URL     pmid: 2020
[76] Li Xichen, Gerber E P, Holland D M, et al. A Rossby Wave Bridge from the Tropical Atlantic to West Antarctica[J]. Journal of Climate, 2015, 28(6):2 256-2 273.
doi: 10.1175/JCLI-D-14-00450.1     URL    
Li Xichen, Gerber E P, Holland D M, et al. A Rossby Wave Bridge from the Tropical Atlantic to West Antarctica[J]. Journal of Climate, 2015, 28(6):2 256-2 273.
doi: 10.1175/JCLI-D-14-00450.1     URL    
[77] Zheng Xiaotong, Xie Shangping, Du Yan, et al. Indian Ocean Dipole response to global warming in the CMIP5 multimodel Ensemble[J]. Journal of Climate, 2013, 26(16):6 067-6 080.
doi: 10.1175/JCLI-D-12-00638.1     URL    
Zheng Xiaotong, Xie Shangping, Du Yan, et al. Indian Ocean Dipole response to global warming in the CMIP5 multimodel Ensemble[J]. Journal of Climate, 2013, 26(16):6 067-6 080.
doi: 10.1175/JCLI-D-12-00638.1     URL    
[78] Weller E, Cai Wenju, Cowan T.Realism of the Indian Ocean Dipole in CMIP5 models, and the implication for climate projections[J]. Journal of Climate, 2013, 26(17):6 649-6 659.
doi: 10.1175/JCLI-D-12-00807.1     URL    
Weller E, Cai Wenju, Cowan T.Realism of the Indian Ocean Dipole in CMIP5 models, and the implication for climate projections[J]. Journal of Climate, 2013, 26(17):6 649-6 659.
doi: 10.1175/JCLI-D-12-00807.1     URL    
[79] Xu Kang, Tam C Y.CMIP5 projections of two types of El Ni?o and their related tropical precipitation[J]. Journal of Climate, 2017, 30(3):849-864.
doi: 10.1175/JCLI-D-16-0413.1     URL    
Xu Kang, Tam C Y.CMIP5 projections of two types of El Niño and their related tropical precipitation[J]. Journal of Climate, 2017, 30(3):849-864.
doi: 10.1175/JCLI-D-16-0413.1     URL    
[80] Ferrett S, Collins M.Diagnosing relationships between mean state biases and El Ni?o shortwave feedback in CMIP5 Models[J]. Journal of Climate, 2018, 31: 1 315-1 335.
doi: 10.1175/JCLI-D-17-0331.1     URL    
Ferrett S, Collins M.Diagnosing relationships between mean state biases and El Niño shortwave feedback in CMIP5 Models[J]. Journal of Climate, 2018, 31: 1 315-1 335.
doi: 10.1175/JCLI-D-17-0331.1     URL    
[81] Yang Yun, Xie Shangping, Wu Lixin, et al. Causes of enhanced SST variability over the equatorial atlantic and its relationship to the Atlantic Zonal Mode in CMIP5[J]. Journal of Climate, 2017, 30(16):6 171-6 182.
doi: 10.1175/JCLI-D-16-0866.1     URL    
Yang Yun, Xie Shangping, Wu Lixin, et al. Causes of enhanced SST variability over the equatorial atlantic and its relationship to the Atlantic Zonal Mode in CMIP5[J]. Journal of Climate, 2017, 30(16):6 171-6 182.
doi: 10.1175/JCLI-D-16-0866.1     URL    
[82] Liu Hailong, Wang Chunzai, Lee S K, et al. Atlantic Warm Pool Variability in the CMIP5 simulations[J]. Journal of Climate, 2013, 26(15):5 315-5 336.
doi: 10.1175/JCLI-D-12-00556.1     URL    
Liu Hailong, Wang Chunzai, Lee S K, et al. Atlantic Warm Pool Variability in the CMIP5 simulations[J]. Journal of Climate, 2013, 26(15):5 315-5 336.
doi: 10.1175/JCLI-D-12-00556.1     URL    
[83] Chang C Y, Carton J A, Grodsky S A, et al. Seasonal climate of the Tropical Atlantic Sector in the NCAR community climate system Model 3: Error structure and probable causes of errors[J]. Journal of Climate, 2007, 20(6):1 053-1 070.
doi: 10.1175/JCLI4047.1     URL    
Chang C Y, Carton J A, Grodsky S A, et al. Seasonal climate of the Tropical Atlantic Sector in the NCAR community climate system Model 3: Error structure and probable causes of errors[J]. Journal of Climate, 2007, 20(6):1 053-1 070.
doi: 10.1175/JCLI4047.1     URL    
[84] Richter I, Xie Shangping.On the origin of equatorial Atlantic biases in coupled general circulation models[J]. Climate Dynamics, 2008, 31(5):587-598.
doi: 10.1007/s00382-008-0364-z     URL    
Richter I, Xie Shangping.On the origin of equatorial Atlantic biases in coupled general circulation models[J]. Climate Dynamics, 2008, 31(5):587-598.
doi: 10.1007/s00382-008-0364-z     URL    
[85] Tozuka T, Doi T, Miyasaka T, et al. Key factors in simulating the equatorial Atlantic zonal sea surface temperature gradient in a coupled general circulation model[J]. Journal of Geophysical Research Oceans, 2011, 116(C6):C06010.DOI10.1029/2010JC00671.
Tozuka T, Doi T, Miyasaka T, et al. Key factors in simulating the equatorial Atlantic zonal sea surface temperature gradient in a coupled general circulation model[J]. Journal of Geophysical Research Oceans, 2011, 116(C6):C06010.DOI10.1029/2010JC00671.
[86] Richter I, Xie Shangping, Wittenberg A T, et al. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation[J]. Climate Dynamics, 2012, 38(5):985-1 001.
doi: 10.1007/s00382-011-1038-9     URL    
Richter I, Xie Shangping, Wittenberg A T, et al. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation[J]. Climate Dynamics, 2012, 38(5):985-1 001.
doi: 10.1007/s00382-011-1038-9     URL    
[87] Richter I, Behera S K, Masumoto Y, et al. Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean[J]. Nature Geoscience, 2014, 6(1):43-47.
Richter I, Behera S K, Masumoto Y, et al. Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean[J]. Nature Geoscience, 2014, 6(1):43-47.
[88] Stockdale T N, Balmaseda M A, Vidard A.Tropical Atlantic SST prediction with Coupled Ocean Atmosphere GCMs[J]. Journal of Climate, 2006, 19(23):6 047.
doi: 10.1175/JCLI3947.1     URL    
Stockdale T N, Balmaseda M A, Vidard A.Tropical Atlantic SST prediction with Coupled Ocean Atmosphere GCMs[J]. Journal of Climate, 2006, 19(23):6 047.
doi: 10.1175/JCLI3947.1     URL    
[89] Davey M, Huddleston M, Sperber K, et al. STOIC: A study of coupled model climatology and variability in tropical ocean regions[J]. Climate Dynamics, 2002, 18(5):403-420.
doi: 10.1007/s00382-001-0188-6     URL    
Davey M, Huddleston M, Sperber K, et al. STOIC: A study of coupled model climatology and variability in tropical ocean regions[J]. Climate Dynamics, 2002, 18(5):403-420.
doi: 10.1007/s00382-001-0188-6     URL    
[90] Bjerknes J.Atmospheric teleconnections from the equatorial Pacific[J]. Monthly Weather Review, 1969, 97(3): 163-172.
doi: 10.1175/1520-0493(1969)097&lt;0163:ATFTEP&gt;2.3.CO;2     URL    
Bjerknes J.Atmospheric teleconnections from the equatorial Pacific[J]. Monthly Weather Review, 1969, 97(3): 163-172.
doi: 10.1175/1520-0493(1969)097&lt;0163:ATFTEP&gt;2.3.CO;2     URL    
[91] Nnamchi H C, Li J, Kucharski F, et al. Thermodynamic controls of the Atlantic Ni?o[J]. Nature Communications, 2015, 6.DOI:10.1038/ncomms9895.
doi: 10.1038/ncomms9895     URL     pmid: 4674767
Nnamchi H C, Li J, Kucharski F, et al. Thermodynamic controls of the Atlantic Niño[J]. Nature Communications, 2015, 6.DOI:10.1038/ncomms9895.
doi: 10.1038/ncomms9895     URL     pmid: 4674767
[92] Nnamchi H C, Li J, Kucharski F, et al. An equatorial-extratropical dipole structure of the Atlantic Ni?o[J]. Journal of Climate, 2016, 29(20):7 295-7 311.
doi: 10.1175/JCLI-D-15-0894.1     URL    
Nnamchi H C, Li J, Kucharski F, et al. An equatorial-extratropical dipole structure of the Atlantic Niño[J]. Journal of Climate, 2016, 29(20):7 295-7 311.
doi: 10.1175/JCLI-D-15-0894.1     URL    
[93] Richter I, Xie Shangping, Behera S K, et al. Equatorial Atlantic variability and its relation to mean state biases in CMIP5[J]. Climate Dynamics, 2014, 42(1/2):171-188.
doi: 10.1007/s00382-012-1624-5     URL    
Richter I, Xie Shangping, Behera S K, et al. Equatorial Atlantic variability and its relation to mean state biases in CMIP5[J]. Climate Dynamics, 2014, 42(1/2):171-188.
doi: 10.1007/s00382-012-1624-5     URL    
[1] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[2] 孙倩, 吴波, 周天军. 基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估[J]. 地球科学进展, 2017, 32(4): 420-434.
[3] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[4] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[5] 李春. “风应力强迫下北太平洋副热带环流与大气环流耦合调整的过程与机理”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1064-1066.
[6] 吴国雄,李建平,周天军,陆日宇,俞永强,朱江,穆穆,段安民,任荣彩,丁一汇,李维京,何金海,王凡,等. 影响我国短期气候异常的关键区:亚印太交汇区[J]. 地球科学进展, 2006, 21(11): 1109-1118.
[7] 王辉,王东晓,杜岩. 2002年国外物理海洋学研究主要进展[J]. 地球科学进展, 2003, 18(5): 797-805.
[8] 江志红,屠其璞. 国外有关海气系统年代际变率的机制研究[J]. 地球科学进展, 2001, 16(4): 569-573.
[9] 赵永平,陈永利,翁学传. 中纬度海气相互作用研究进展[J]. 地球科学进展, 1997, 12(1): 32-36.
[10] 张人禾. ENSO循环的形成机制及其模拟与预测研究进展[J]. 地球科学进展, 1993, 8(6): 50-56.
[11] 朱复成. 近年来大气科学某些进展及其展望[J]. 地球科学进展, 1992, 7(5): 15-.
[12] 陈烈庭. 海气相互作用[J]. 地球科学进展, 1991, 6(5): 76-77.
阅读次数
全文


摘要