Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (4): 420-434    DOI: 10.11867/j.issn.1001-8166.2017.04.0420
论文     
基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估
孙倩1, 吴波2, *, 周天军2, 3
1.成都信息工程大学大气科学学院,四川 成都 610225;
2.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029;
3.中国科学院大学,北京 100049
Construction of Statistical-Dynamic Prediction Model for the Asian-Australian Summer Monsoon Based on the Predictable Mode Analysis Method and Assessment of Its Predictive Skills
Sun Qian1, Wu Bo2, *, Zhou Tianjun2, 3
1. College of Atmospheric Science, Chengdu University of Information Technology,Chengdu 610225,China;
2.LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1328 KB)   HTML
摘要:

受模式性能的限制,当前的气候模式在直接预报亚澳季风区的夏季降水变化方面技巧较低。采用统计—动力相结合的方法预报亚澳夏季风降水,首先从观测数据中提取具有清晰物理意义的可预报模态;然后,将国际ENSEMBLES计划提供的多模式、多集合样本耦合模式季节预测试验预测的可预报模态的主成分时间序列与对应观测得到的可预报模态的空间型组合,重构降水场,建立了针对亚澳夏季风降水的统计—动力结合的季节预测系统。分析了该系统提前1个月、4个月和7个月的回报技巧。结果表明,统计—动力预测系统的预测技巧显著优于纯动力预测的技巧。另一方面,多模式集合平均的预测技巧优于单个模式,因此针对季风区降水开展多模式集合预测是非常必要的。

关键词: 季节预测亚澳季风年际变率多模式集合    
Abstract:

Due to the limitations of model performances, the predictive skills of current climate models for the Asian-Australian summer monsoon precipitation are still poor. The prediction based on the combination of statistical and dynamic approaches is an effective way to improve the predictive skills. We used such method to identify the predictable modes of the Asian-Australian summer monsoon precipitation with clear physical interpretation from the historical observational data. Then we combined the principal components time series of these modes predicted by the coupled models, which is derived from the seasonal prediction experiments in the ENSEMBLES project, and the corresponding spatial patterns derived from the above observational analysis to reconstruct the precipitation field. These formed a statistical-dynamic seasonal prediction model for the Asian-Australian summer monsoon precipitation. We analyzed the predictive skills of the model at 1-, 4-and 7-month leads. The result shows that the forecast skills of the statistical-dynamic prediction model are higher than those of the simple dynamic predictions. In addition, the predictive skills of the Multi-Model Ensemble (MME) mean are superior to those of any individual models. Therefore, it is very necessary to implement multi-model ensemble prediction for the monsoon precipitation.

Key words: Interannual variability    Multi-model ensemble.    Asian-Australian Monsoon    Seasonal prediction
收稿日期: 2016-11-07 出版日期: 2017-04-20
ZTFLH:  P425.4+2  
基金资助:

公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012); 国家自然科学基金项目“以大西洋多年代际振荡作为主要预报因子的夏季北半球热带外气候年代际预测研究”(编号:41675089)资助

通讯作者: 吴波(1982-),男,安徽合肥人,副研究员,主要从事气候动力学研究.E-mail:wubo@mail.iap.ac.cn   
作者简介: 孙倩(1992-),女,四川乐山人,硕士研究生,主要从事气候预测研究.E-mail:sunqiancuit@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周天军
孙倩
吴波

引用本文:

孙倩, 吴波, 周天军. 基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估[J]. 地球科学进展, 2017, 32(4): 420-434.

Sun Qian, Wu Bo, Zhou Tianjun. Construction of Statistical-Dynamic Prediction Model for the Asian-Australian Summer Monsoon Based on the Predictable Mode Analysis Method and Assessment of Its Predictive Skills. Advances in Earth Science, 2017, 32(4): 420-434.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.04.0420        http://www.adearth.ac.cn/CN/Y2017/V32/I4/420

[1] Wang B, Lee J Y, Xiang B. Asian summer monsoon rainfall predictability: A predictable mode analysis[J]. Climate Dynamics , 2014, 44(1/2): 1-14.
[2] Ding Yihui, Chan J C L. The East Asian summer monsoon: An overview[J]. Meteorology & Atmospheric Physics , 2005, 89(1/4): 117-142.
[3] Wang B. Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific-East Asian monsoons[J]. Journal of Climate , 2001, 14(20): 4 073-4 090.
[4] Krishnamurti T N, Mitra A K, Kumar T S V V, et al . Seasonal climate forecasts of the South Asian monsoon using multiple coupled models[J]. Tellus , 2006, 58(4): 487-507.
[5] Kulkarni M A, Acharya N, Kar S C, et al . Probabilistic prediction of Indian summer monsoon rainfall using global climate models[J]. Theoretical & Applied Climatology , 2012, 107(3):441-450.
[6] Lau K M, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System[M]. Berlin: Springer, 2013.
[7] Wang B, Wu R, Fu X. Pacific-East Asian tele connection: How does ENSO affect East Asian climate?[J]. Journal of Climate , 2000, 13(9): 1 517-1 536.
[8] Lau K M, Wu H T. Principal modes of rainfall-SST variability of the Asian summer monsoon: A reassessment of the monsoon-ENSO relationship[J]. Journal of Climate , 2001, 14(13): 2 880-2 895.
[9] Wang B, Wu R, Li T. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation[J]. Journal of Climate , 2003, 16(8): 1 195-1 211.
[10] Chang C P. Annual cycle of southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition[J]. Journal of Climate , 2005, 18(2): 287-301.
[11] Wang Bin. Thrusts and prospects on understanding and predicting Asian monsoon climate[J]. Journal of Meteorological Research , 2008,66(5):653-669.
. 气象学报, 2008, 66(5): 653-669.]
[12] Wang B, Lee J Y, Kang I S, et al . How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability?[J]. Climate Dynamics , 2008, 30(6):605-619.
[13] Wang B, Yang J, Zhou T, et al . Interdecadal changes in the major modes of Asian Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s [J]. Journal of Climate , 2008, 21(8): 1 771-1 789.
[14] Wang B, Huang F, Wu Z, et al . Multi-scale climate variability of the South China Sea monsoon: A review[J]. Dynamics of Atmospheres & Oceans , 2009, 47(1): 15-37.
[15] Kumar K K, Cane M A. On the weakening relationship between the Indian monsoon and ENSO[J]. Journal-Korean Physical Society , 2010, 56(56): 275-278.
[16] Wang B. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multi-decadal oscillation[J]. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110(14): 5 347-5 352.
[17] Saji N H, Goswami B N, Vinayachandran P N, et al . A dipole mode in the tropical Indian Ocean[J]. Nature , 1999, 401(6 751): 360-363.
[18] Webster P J, Moore A M, Loschnigg J P, et al . Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98[J]. Nature , 1999, 401(6 751): 356-360.
[19] Guan Z, Yamagata T. The unusual summer of 1994 in East Asia: IOD teleconnections[J]. Geophysical Research Letters , 2003, 30(10): 235-250.
[20] Ha K J. Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean[J]. Climate Dynamics , 2010, 34(7/8): 1 059-1 071.
[21] Wang B, Kang I S, Lee J Y. Ensemble simulations of Asian Australian monsoon variability by 11 AGCMs[J]. Journal of Climate , 2004, 17(4): 803-818.
[22] Zhou T, Wu B, Wang B. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon?[J]. Journal of Climate , 2009, 22(5): 1 159-1 173.
[23] Zou L, Zhou T. Can Regional Ocean-Atmosphere Coupled Model improve the simulation of the Interannual Variability of Western North Pacific Summer Monsoon?[J]. Journal of Climate , 2013, 26(7): 2 353-2 367.
[24] Song F, Zhou T. The climatology and interannual variability of East Asian Summer Monsoon in CMIP5 Coupled Models: Does Air-Sea coupling improve the simulations?[J]. Journal of Climate , 2014, 27(23):8 761-8 777.
[25] Wu B, Zhou T. Relationships between the East Asian-western North Pacific monsoon and ENSO simulated by FGOALS-s2[J]. Advances in Atmospheric Sciences , 2013, 30(3): 713-725.
[26] Wang B, Lee J Y, Kang I S, et al . Advance and prospectus of seasonal prediction: Assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004)[J]. Climate Dynamics , 2009, 33(1): 93-117.
[27] Lee J Y, Wang B, Kang I S, et al . How are seasonal prediction skills related to models’ performance on mean state and annual cycle?[J]. Climate Dynamics , 2010, 35(2/3): 267-283.
[28] Chou Jifan. Why to combine dynamical and statistical methods together? — Also discuss how to combine[J]. Plateau Meteorology , 1986, 5(4):77-82.
. 高原气象, 1986, 5(4):77-82.]
[29] Huang Jianping, Wang Shaowu. The experiment of seasonal prediction using the analogy-dynamical model[J]. Science in China ( Series B ), 1991,(2):216-224.
. 中国科学:B辑, 1991,(2):216-224.]
[30] Huang J, Yi Y, Wang S, et al . An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution[J]. Quarterly Journal of the Royal Meteorological Society , 1993, 119(511):547-565.
[31] Ren Hongli, Chou Jifan. Analogue correction method of errors by combining both statistical and dynamical methods together[J]. Acta Meteorologica Sinica , 2005, 63(6):988-993.
. 气象学报, 2005, 63(6):988-993.]
[32] Ren Hongli, Zhang Peiqun, Li Weijing, et al . The dynamical-analogue ensemble method for improving operational monthly forecasting[J]. Acta Meteorologica Sinica , 2014,(4):723-730.
. 气象学报, 2014,(4):723-730.]
[33] Yu Haipeng, Huang Jianping, Li Weijing, et al . Development of the analogue-dynamical method for error correction of numerical forecasts[J]. Acta Meteorologica Sinica , 2014,(5):1 012-1 022.
. 气象学报, 2014,(5):1 012-1 022.]
[34] Zheng Zhihai, Ren Hongli, Huang Jianping. Analogue correction of errors based on seasonal climatic predictable components and numerical experiments[J]. Acta Physica Sinica , 2009, 58(10):7 359-7 367.
. 物理学报, 2009, 58(10):7 359-7 367.]
[35] Li Weijing, Zheng Zhihai, Sun Chenghu. Improvements to dynamical analogue climate prediction method in China[J]. Chinese Journal of Atmospheric Sciences , 2013, 37(2):341-350.
. 大气科学, 2013, 37(2):341-350.]
[36] Wang H, Fan K. A New Scheme for Improving the Seasonal Prediction of Summer Precipitation Anomalies[J]. Weather & Forecasting , 2009, 24(2):548-554.
[37] Lang X, Wang H. Improving extraseasonal summer rainfall prediction by merging information from GCMs and observations[J]. Weather & Forecasting , 2010, 25(4):1 263-1 274.
[38] Lang Xianmei. A hybrid dynamical-statistical approach for predicting winter precipitation over eastern China[J]. Acta Meteorologica Sinica , 2012, 70(2):174-182.
. 气象学报, 2012, 70(2):174-182.]
[39] Wang Huijun, Fan Ke, Lang Xianmei, et al . Advances in Climate Prediction Theory and Technique of China[M]. Beijing:China Meteorological Press, 2012.
. 北京:气象出版社, 2012.]
[40] Wang B, Lee J Y,Kang I S, et al . Coupled predictability of seasonal tropical precipitation[J]. Clivar Exchanges ,2007,12:17-18.
[41] Lee J Y, Wang B, Ding Q, et al . How predictable is the northern hemisphere summer upper-tropospheric circulation?[J]. Climate Dynamics , 2011, 37(5/6): 1 189-1 203.
[42] Lee J Y, Wang B. Seasonal Climate Prediction and Predictability of Atmospheric Circulation[M]∥Druyan LM,ed. Climate Models. Croatia:InTech, 2012.
[43] Lee J Y, Lee S S, Wang B, et al . Seasonal prediction and predictability of the Asian winter temperature variability[J]. Climate Dynamics , 2013, 41(3/4): 573-587.
[44] Linden P V D, Mitchell J F B. ENSEMBLES: Climate Change and Its Impacts: Summary of Research And Results from the ENSEMBLES Project[M]. UK: Met Office Hadley Center, 2009.
[45] Weisheimer A, Doblasreyes F J, Palmer T N, et al . ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions: Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs[J]. Geophysical Research Letters , 2009, 36(21): 147-148.
[46] Weisheimer A, Doblasreyes F J, Palmer T N. Multi-model skill of ENSO forecasts in ENSEMBLES stream 2[C]∥EGU General Assembly Conference. EGU General Assembly Conference Abstracts, 2009.
[47] Alessandri A, Borrelli A, Navarra A, et al . Evaluation of probabilistic quality and value of the ENSEMBLES multi-model seasonal forecasts: Comparison with DEMETER[J]. Monthly Weather Review , 2011, 139(139): 581-607.
[48] Adler R F, Huffman G J, Chang A, et al . The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979 present)[J]. Journal of Hydrometeorology , 2003, 4(6): 1 147.
[49] Smith T M, Reynolds R W. Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997)[J]. Journal of Climate , 2003, 16(10): 1 495-1 510.
[50] Dee D P, Uppala S M, Simmons A J, et al . The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society , 2011, 137(656): 553-597.
[51] Michaelsen J. Cross-validation in statistical climate forecast models[J]. Journal of Applied Meteorology , 1987, 26(11): 1 589-1 600.
[52] North G R, Bell T L, Cahalan R F, et al . Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review , 1982, 110(7): 699.
[53] Wang B. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions[J]. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110(8): 2 718-2 722.
[54] Wu B, Li T, Zhou T. Relative contributions of the Indian ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño Decaying Summer[J]. Journal of Climate , 2010, 23(11): 2 974-2 986.
[55] Wu B, Zhou T, Li T. Seasonally evolving dominant interannual variability modes of East Asian climate[J]. Journal of Climate , 2009, 22(11): 2 992-3 005.
[56] Xie S P, Hafner J, Tokinaga H, et al . Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J]. Journal of Climate , 2009, 22(3): 730-747.
[57] Xiang B, Wang B, Yu W, et al . How can anomalous western North Pacific Subtropical High intensify in late summer?[J]. Geophysical Research Letters , 2013, 40(10): 2 349-2 354.
[58] Wu Bo, Zhou Tianjun, Sun Qian. Impacts of initialization schemes of oceanic states on the predictive skills of the IAP near-term climate prediction system[J]. Advances in Earth Science , 2017, 32(4):342-352.
. 地球科学进展,2017, 32(4):342-352.]

[1] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[2] 郝青振, 张人禾, 汪品先, 王斌. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699.
[3] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[4] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[5] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.