地球科学进展 ›› 2015, Vol. 30 ›› Issue (5): 564 -578. doi: 10.11867/j.issn.1001-8166.2015.05.564

上一篇    下一篇

黄渤海有机碳的分布特征及收支评估研究
刘军 1, 2( ), 于志刚 1, 臧家业 2, 孙涛 2, 赵晨英 2, 冉祥滨 2, *( )   
  1. 1. 中国海洋大学海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
    2. 海洋生态研究中心,国家海洋局第一海洋研究所, 山东 青岛 266061
  • 出版日期:2015-06-09
  • 通讯作者: 冉祥滨 E-mail:liu009liu@sina.com;rxb@fio.org.cn
  • 基金资助:
    国家自然科学基金项目“植硅体在河流硅输送中的作用”(编号: 41106072)和“乳山湾外近岸海域低氧现象与底边界层过程研究”(编号: 41376093)资助

Distribution and Budget of Organic Carbon in the Bohai and Yellow Seas

Jun Liu 1, 2, Zhigang Yu 1, Jiaye Zang 2, Tao Sun 2, Chenying Zhao 2, Xiangbin Ran 2   

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
    2.Research Center for Marine Ecology, First nstitute of oceanography, State Oceanic Administration, Qingdao 266061, China
  • Online:2015-06-09 Published:2015-05-06

陆架边缘海是陆海相互作用研究中最为关键的区域,也是全球重要的碳储库,在区域物质循环过程中发挥着重要的作用。基于2012年5月和11月对黄渤海海域的综合调查,对该海域水体和沉积物中有机碳的含量与分布进行了分析,并结合相关文献资料对黄渤海有机碳的收支进行了估算。主要结论为:黄渤海溶解有机碳和颗粒有机碳均呈近岸河口区域高、离岸低的分布趋势;有机碳的组成以溶解有机碳为主,颗粒有机碳由海洋自生的有机碳和陆地来源的有机碳组成;黄渤海沉积物有机碳高值区主要分布在河口和泥质区,其组成也是由海洋自生和陆源混合而成,其中渤海以陆源为主,而黄海以海源为主。黄渤海有机碳收支评估表明,有机碳的主要来源为初级生产力产生的有机物,其贡献为(6 760±971) ×104 t/a,占有机碳输入总量的(74±10)%,沉积物再悬浮的通量为(884±200)×104 t/a,东海向黄海输入的通量为(679±107)×104 t/a,河流及陆源输入的通量为(643±63)×104 t/a,大气干湿沉降的通量为(141±39)×104 t/a,其贡献分别占有机碳输入总量的(10±2.2)%,(7.5±1.2)%,(7.0±0.7)%和(1.5±0.4)%;黄渤海有机碳的主要支出为呼吸消耗,其贡献为(5 190±746)×104 t/a,占有机碳输出总量的(57±8.2)%,黄海向东海输出的通量为(2150±370)×104 t/a,有机碳沉积通量为(1 030±225)×104 t/a,有机碳降解通量为(737±191)×104 t/a,其贡献分别占有机碳输出总量的(24±4.1)%,(11±2.5)%和(8.0±2.1)%。有机碳收支评估表明黄渤海有机碳以海洋自生来源为主,且具有潜在碳的“汇”的特性,水体中外源输入和海洋自生有机碳的(1.6±0.3)%埋藏于该海域内。

Ocean margin is recognized as a most important area for land-sea interaction and also one of the major sinks of organic carbon, which plays a very important role in global biogeochemical cycles of carbon. Based on the comprehensive investigation in the Bohai and Yellow Seas in May and November, 2012 and other available data, distributions of Dissolved Organic Carbon (DOC), Particulate Organic Carbon (POC) and sedimentary Total Organic Carbon (TOC) were discussed, and fluxes and fates of organic carbon in the Bohai and Yellow Seas were estimated. The results show that DOC is the dominate form of organic carbon in the Bohai and Yellow Seas. DOC and POC distributions show a gradient decline trend from nearshore zone to offshore area, and the components of POC is consisted of both terrestrial and marine matters. High content of TOC in sediments distributes in accordance with estuaries and mud areas. Results of budget of organic carbon show that the major sources of organic carbon is phytoplankton related production with a flux of (6 760±971) ×104 t/a, accounting for (74±10)% of total sources, and then the fluxes of sediment resuspension, input from East China Sea, riverine input and atmospheric deposition are (884±200)×104 t/a, (679±107)×104 t/a, (643±63)×104 t/a and (141±39)×104 t/a, with contribution rates of (10±2.2)%, (7.5±1.2)%, (7±0.7)% and (1.5±0.4)%, respectively. Dominate removal of organic carbon in the Bohai and Yellow Seas are biorespiration with a flux of (5 190±746) ×104 t/a, accounting for (57±8.2)% of organic carbon removal, and then the fluxes of organic carbon output to East China Sea, sedimentation and degradation are (2 150±370)×104 t/a, (1 030±225)×104 t/a and (737±191)×104 t/a, with contribution rates of (24±4.1)%, (11±2.5)% and (8.0±2.1)%, respectively. These indicate that the Bohai and Yellow Seas show a potential sink of organic carbon, and about (1.6±0.3)% of organic carbon from external input and authigenic production is preserved in sediment. Budget indicates that the dominate sources are marine authigenic products, while terrestrial inputs play a minor role in the Bohai and Yellow Seas.

中图分类号: 

图1 黄渤海采样站位与泥质区和流系分布图(泥质区和流系分布重绘自文献[9]) KWC:黑潮支流,ZFCC: 浙闽沿岸流,YSCC: 黄海沿岸流,YSWC:黄海暖流
Fig.1 Sampling stations, mud areas and circulation systems in the Bohai and Yellow Seas (Mud areas and circulation systems are from reference [9]) KWC: Kuroshio Warm Current; ZFCC: Zhejiang-Fujian Coastal Current; YSCC: Yellow Sea Coastal Current; YSWC: Yellow Sea Warm Current
图2 黄渤海水量收支(单位:10 9 m 3/a)
Fig.2 Water budget in the Bohai and Yellow Seas(unit:10 9 m 3/a)
表1 黄渤海水体DOC和POC的浓度与范围(单位:mg/L)
Table 1 Results of DOC and POC in the Bohai and Yellow Seas in 2012 (unit: mg/L)
图3 黄渤海2012年春季和秋季溶解有机碳的分布图
Fig.3 Distributions of dissolved organic carbon in the Bohai and Yellow Seas in 2012
图4 黄渤海2012年春季和秋季颗粒有机碳的分布
Fig.4 Distributions of particulate organic carbon in the Bohai and Yellow Seas in 2012
图5 黄渤海2012年春季和秋季水体POC、PON、盐度和C/N比值之间的关系 (a)春季表层,(b)春季底层,(c)秋季表层,(d)秋季底层
Fig.5 Relationship between POC, PON salinity and C/N in the Bohai and Yellow Seas in 2012 (a) Surface in spring, (b) Bottom in spring, (c) Surface in autumn, (d) Bottom in autumn
图6 黄渤海2012年春季和秋季表层沉积物有机碳的分布(水深分布根据船载测深仪所测数据描绘)
Fig.6 Horizontal distribution of total organic carbon in the surface sediment of the Bohai and Yellow Seas (The distribution of depth is described from data by depth sounder)
图7 渤海、黄河和长江口柱状样沉积物中有机碳含量和C/N比剖面变化
Fig.7 Vertical profiles of TOC and C/N ratio in the sediment cores of the Bohai and Yellow Seas and Changjiang Estuary
表2 黄渤海主要入海河流有机碳通量
Table 2 River discharges and organic carbon fluxes from the major rivers to the Bohai and Yellow Seas
表3 黄海、渤海和东海水体有机碳的含量
Table 3 Contents of organic carbon in the Bohai Sea, Yellow Sea and East China Sea
表4 黄渤海有机碳沉积通量和再悬浮通量
Table 4 Fluxes of sedimentation and re-suspension of organic carbon in the Bohai and Yellow Seas
图8 有机碳在渤海和黄海的收支(单位:10 4 t/a) Fw:河流输入有机碳通量,Fa:大气干湿沉降有机碳通量,Fp:初级生产力有机碳通量,Fr:呼吸消耗有机碳通量,Fs:有机碳沉积通量,FSr:沉积物再悬浮有机碳通量,FY:黄海输入东海的有机碳通量,FE:东海输入黄海的有机碳通量,Fd:有机碳降解通量
Fig. 8 Flux and fate of organic carbon in the Bohai and Yellow Seas (unit: 10 4 t/a) Fw: River input, Fa: Atmospheric precipitation,Fp: Primary production, Fr: Respiration, Fs: Sedimentation, FSr: Sediment resuspension, Fd: Degradation, FY: Water exchange from Yellow Sea, FE: Water exchange from East China Sea
[1] Falkowski P, Scholes R J, Boyle E, et al.The global carbon cycle: A test of our knowledge of earth as a system[J]. Science, 2000, 290(5 490): 291-296.
[2] Regnier P, Friedlingstein P, Ciais P, et al.Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.
[3] Hedges J I, Keil R G.Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2): 81-115.
[4] Burdige D J.Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485.
[5] Wang Jianghai, Sun Xianxian, Xu Xiaoming, et al.Marine carbon sequestration: Current situation, problems and future[J]. Advances in Earth Science, 2015, 30(1): 17-25, doi:10.11867/j.issn.1001-8166.2015.01.0017.
[王江海, 孙贤贤, 徐小明, 等. 海洋碳封存技术: 现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25, doi:10.11867/j.issn.1001-8166.2015.01.0017.]
[6] Cauwet G, Mackenzie F T.Carbon inputs and distribution in estuaries of turbid rivers: The Yangtze and Yellow Rivers (China)[J]. Marine Chemistry, 1993, 43(1/4): 235-246.
[7] Xia B, Zhang L.Carbon distribution and fluxes of 16 rivers discharging into the Bohai Sea in summer[J]. Acta Oceanologica Sinica, 2011, 30(3): 43-54.
[8] Zhang Longjun, Zhang Xiangshang, Wang Xiaoliang, et al.Spatial and temporal distribution of particulate and dissolved organic carbon in Yellow River estuary[J]. Advances in Water Science, 2007, 18(5): 674-682.
[张龙军, 张向上, 王晓亮, 等. 黄河口有机碳的时空输运特征及其影响因素分析[J]. 水科学进展, 2007, 18(5): 674-682.]
[9] Liu J P, Xu K H, Li A C, et al.Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3): 208-224.
[10] Ran Xiangbin, Che Hong, Sun Tao, et al.Distributions and sources of particle organic carbon and biogenic silica in the Bohai Sea[J]. Acta Oceanologica Sinica, 2014, 36(10): 12-24.
[冉祥滨, 车宏, 孙涛, 等. 渤海颗粒有机碳与生物硅的分布及来源[J]. 海洋学报, 2014, 36(10): 12-24.]
[11] Hu L, Shi X, Yu Z, et al.Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact[J]. Marine Chemistry, 2012, 142: 29-40.
[12] Liu S M, Zhang J, Chen S Z, et al.Inventory of nutrient compounds in the Yellow Sea[J]. Continental Shelf Research, 2003, 23(11): 1 161-1 174.
[13] Martin J M, Zhang J, Shi M C, et al.Actual flux of the Huanghe (Yellow River) sediment to the western Pacific Ocean[J]. Netherlands Journal of Sea Research, 1993, 31(3): 243-254.
[14] Chung C S, Hong G H, Kim S H, et al.The distributional characteristics and budget of dissolved inorganic nutrients in the Yellow Sea[M]∥Biogeochemical Processes in the Bohai and Yellow Sea. Seoul: The Dongjin Publication Association, 1999: 41-68.
[15] Taniguchi M, Ishitobi T, Chen J, et al.Submarine groundwater discharge from the Yellow River delta to the Bohai Sea, China[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, 113:C09021,doi:10.1029/2008JC004776.
[16] Ludwig W, Probst J L, Kempe S.Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1): 23-41.
[17] Aller R C, Blair N E.Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt: A sedimentary incinerator[J]. Continental Shelf Research, 2006, 26(17): 2 241-2 259.
[18] Meng Zhaoyang, Jia Xiaofang, Zhang Renjian, et al.Characteristics of PM2.5 at Lin’an regional background station in the Yangtze River delta region[J]. Journal of Applied Meteorological Science, 2012, 23(4): 424-432.
[孟昭阳, 贾小芳, 张仁健, 等. 2010 年长江三角洲临安本底站PM2.5理化特征[J]. 应用气象学报, 2012, 23(4): 424-432.]
[19] Zhu Mingyuan, Mao Xinghua, Lü Ruihua, et al.Chlorophyll a and primary productivity in the Yellow Sea[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1993, 11(3): 38-51.
[朱明远, 毛兴华, 吕瑞华, 等. 黄海海区的叶绿素a和初级生产力[J]. 黄渤海海洋, 1993, 11(3): 38-51.]
[20] Tan Saichun, Shi Guangyu.Remote sensing for ocean primary productivity and its spatio-temporal variability in the China seas[J]. Acta Geographica Sinica, 2007, 61(11): 1 189-1 199.
[檀赛春, 石广玉. 中国近海初级生产力的遥感研究及其时空演化[J]. 地理学报, 2007, 61(11): 1 189-1 199.]
[21] Wei Hao, Zhao Liang, Feng Shizuo.Study on the carbon cycle and phytoplankton dynamic processes in the Bohai Sea[J]. Acta Oceanologica Sinica, 2003, 25(Suppl.2): 151-156.
[魏皓, 赵亮, 冯士筰. 渤海碳循环与浮游植物动力学过程研究[J]. 海洋学报, 2003, 25(增刊2): 151-156.]
[22] Zhang Yansong, Zhang Feijun, Guo Xuewu, et al.Vertical flux of the setting particulate matter in the water column of the Yellow Sea in Summer[J]. Oceanologia et Limnologia Sinica, 2004, 35(3): 230-238.
[张岩松, 章飞军, 郭学武, 等. 黄海夏季水域沉降颗粒物垂直通量的研究[J]. 海洋与湖沼,2004, 35(3): 230-238.]
[23] Wei Qinsheng, Wang Huiwu, Ge Renfeng, et al.Vertical distribution of suspended matter and implications in the Southern Yellow Sea[J].Advances in Earth Science, 2013, 28(3): 374-390.
[韦钦胜, 王辉武, 葛人峰, 等. 南黄海悬浮体的垂直分布特性及其指示意义[J]. 地球科学进展, 2013, 28(3): 374-390.]
[24] Cifuentes L A, Coffin R B, Solorzano L, et al.Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary[J]. Estuarine, Coastal and Shelf Science, 1996, 43(6): 781-800.
[25] Shao Xibin, Wu Ying, Hu Jun, et al.Spatial variability of particulate organic matter in the Changjiang River estuary and adjacent regions in summer[J]. Oceanologia et Limnologia Sinica, 2014, 45(6): 1 288-1 294.
[邵锡斌, 吴莹, 胡俊, 等. 颗粒态有机物在长江口及其邻近海域的夏季分布和影响因素初析[J]. 海洋与湖沼, 2014, 45(6): 1 288-1 294.]
[26] Zhu Z Y, Zhang J, Wu Y, et al.Bulk particulate organic carbon in the East China Sea: Tidal influence and bottom transport[J]. Progress in Oceanography,2006, 69(1): 37-60.
[27] Reeburgh W S.Figures summarizing the global cycles of biogeochemically important elements[J]. Bulletin of the Ecological Society of America, 1997,78(4): 260-267.
[28] Milliman J D, Qinchun X, Zuosheng Y.Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean[J]. American Journal of Science, 1984, 284(7): 824-834.
[29] Jia Guodong, Peng Ping’an, Fu Jiamo.Sedimentary records of accelerated eutrophication for the last 100 years at the Peal River estuary[J]. Quateranry Sciences, 2002, 22(2): 158-165.
[贾国东, 彭平安, 傅家谟. 珠江口近百年来富营养化加剧的沉积记录[J]. 第四纪研究, 2002, 22(2): 158-165.]
[30] Van Mooy B A S, Keil R G, Devol A H. Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification[J]. Geochimica et Cosmochimica Acta, 2002, 66(3): 457-465.
[31] Cai W J.Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3: 123-145.
[32] Ogawa H, Usui T, Koike I.Distribution of dissolved organic carbon in the East China Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 353-366.
[33] Ministry of Water Resources of the People’s Republic of China. Chinese River Sediment Bulletin 2011[EB/OL]. Beijing: China Water Power Press, 2011[2014-12-01]. http://www.mwr.gov.cn/zwzc/hygb/zghlnsgb/201212/t20121213_334877.html.[中华人民共和国水利部. 中国河流泥沙公报2011[EB/OL]. 北京: 中国水利水电出版社, 2011[2014-12-01].http://www.mwr.gov.cn/zwzc/hygb/zghlnsgb/201212/t20121213_334877.html.]
[34] Xia Bin.Contaminative Conditions of Main Sixteen Rivers Around Bohai Sea and Pollutant Flux Flowing into Sea in Summer of 2005[D]. Qingdao: Ocean University of China, 2007.
[夏斌. 2005年夏季环渤海16条主要河流的污染状况及入海通量[D]. 青岛: 中国海洋大学, 2007.]
[35] Haihe River Water Resources Commission. Haihe River Basin Water Resources Bulletin[EB/OL]. Tianjin: Haihe River Water Resources Commission, 2005[2014-12-01]. http://www.hwcc.gov.cn/pub/hwcc/static/szygb/gongbao2005/index.htm.[水利部海河水利委员会. 海河流域水资源公报2005年[EB/OL]. 天津: 海河水利委员会, 2005[2014-12-01]. http://www.hwcc.gov.cn/pub/hwcc/static/szygb/gongbao2005/index.htm.]
[36] Wang Jiangtao, Yu Zhigang, Zhang Jing.Study on dissolved organic carbon in the estuary of the Yalujiang River[J]. Journal of Ocean University of Qingdao, 1998,3: 132-136.
[王江涛, 于志刚, 张经. 鸭绿江口溶解有机碳的研究[J]. 青岛海洋大学学报,1998,3:132-136.]
[37] Liu Jingwei, Li Fuxiang, Liu Yue, et al.Researches on the characteristics of sequencial variation of runof in the lower valley of the lower Yalu River[J]. Yellow River, 2011, 33(10):34-36.
[刘敬伟, 李富祥, 刘月, 等. 鸭绿江下游径流时序变化特征研究[J]. 人民黄河, 2011, 33(10): 34-36.]
[38] Kim J K, Jung S, Eom J S, et al.Dissolved and particulate organic carbon concentrations in stream water and relationships with land use in multiple-use watersheds of the Han River (Korea)[J]. Water International, 2013, 38(3): 326-339.
[39] Yang Shouye, Jung Hoi-soo, Li Congxian, et al.Major element geochemistry of sediments from Chinese and Korean Rivers[J]. Geochimica, 2004, 33(1): 99-105.
[杨守业, Jung Hoi-soo, 李从先, 等.黄河, 长江与韩国 Keum, Yeongsan 江沉积物常量元素地球化学特征[J]. 地球化学, 2004, 33(1): 99-105.]
[40] Cheng Jun. Seasonal Variation, Distribution and Sources of Particulate Organic Carbon in the Yellow Sea and East China Sea[D]. Qingdao: Ocean University of China, 2011.
[程君. 黄东海颗粒有机碳的季节变化、分布和来源[D]. 青岛: 中国海洋大学, 2011.]
[41] Zhang Ting, Wang Zuohua, Shi Xiaoyong, et al.Spatial distribution of dissolved organic carbon in the Yellow Sea and East China Sea[J]. Marine Environmental Science, 2011, 30(2): 162-166.
[张婷, 王作华, 石晓勇, 等. 黄海, 东海溶解有机碳的分布特征[J]. 海洋环境科学, 2011, 30(2): 162-166.]
[42] Carlson C A.Production and removal processes[M]∥Hansell D A, Carlson C A, eds. BiogeoChemistry of Marine Dissolved Organic Matter. Netherlands: Elsevier, 2002: 91-151.
[43] Henson S A, Sanders R, Madsen E, et al.A reduced estimate of the strength of the ocean’s biological carbon pump[J]. Geophysical Research Letters, 2011, 38(4) : L04606-L04610.
[44] Hwang J, Montluon D B, Pilskaln C H, et al. Molecular and isotopic insights into particulate organic carbon sources and dynamics in Jordan Basin, Gulf of Maine[J]. Continental Shelf Research, 2013, 68: 15-22.
[45] Hansell D A, Carlson C A, Repeta D J, et al.Dissolved organic matter in the ocean: A controversy stimulates new insights[J]. Oceanography, 2009, 22: 52-61.
[46] Jiao Nianzhi, Zhang Chuanlun, Xie Shucheng, et al.To decihpher the ocean carbon sink through interdisciplinarity and the integration of the past and present[J]. Advances in Earth Science, 2014, 29(11): 1 294-1 297, doi:10.11867/j.issn.1001-8166.2014.11.1294.
[焦念志, 张传伦, 谢树成, 等.古今结合论碳汇、见微知著识海洋[J]. 地球科学进展, 2014, 29(11): 1 294-1 297, doi:10.11867/j.issn.1001-8166.2014.11.1294.]
[47] Lu Bo, Li Ganxian, Huang Shaojian, et al.The application of signal isolation technology in the ocean instruments[J]. Ocean Technology, 2005, 24(2): 28-33.
[卢博, 李赶先, 黄韶健, 等. 中国黄海, 东海和南海北部海底浅层沉积物声学物理性质之比较[J]. 海洋技术, 2005, 24(2): 28-33.]
[48] Chen Jianfang, Jin Haiyan, Liu Xiaoya, et al.Recativity and potential regenerating capability of sedimentary oraganic matter in the Yellow Sea and the East China Sea[J]. Geochimica, 2005, 34(4): 83-90.
[陈建芳, 金海燕, 刘小涯, 等. 黄海和东海沉积物有机质活性及营养盐再生潜力初探[J]. 地球化学, 2005, 34(4): 83-90.]
[49] Li Fengye, Gao Shu, Jia Jianjun, et al.Contemporary deposition rates of fine-grained sediment in the Bohai and Yellow Seas[J]. Oceanologia et Limnologia Sinica, 2002, 33(4): 364-369.
[李凤业, 高抒, 贾建军, 等. 黄、渤海泥质沉积区现代沉积速率[J]. 海洋与湖沼,2002, 33(4): 364-369.]
[50] Hu Bangqi, Li Guogang, Li Jun, et al.Spatial variability of the 210Pb sedimentation rates in the Bohai and Huanghai Seas and its influencing factors[J]. Acta Oceanologica Sinica, 2011, 33(6): 125-133.
[胡邦琦, 李国刚, 李军, 等. 黄海、渤海铅-210沉积速率的分布特征及其影响因素[J]. 海洋学报, 2011, 33(6): 125-133.]
[51] Qi Jun, Li Fengye, Song Jinming, et al.Sedimentation rate and flux of the North Yellow Sea[J]. Marine Geology & Quaternary Geology, 2004,(2):9-14.
[齐君,李凤业,宋金明, 等. 北黄海沉积速率及其沉积通量[J]. 海洋地质与第四纪地质,2004,(2):9-14.]
[52] Moran M A, Sheldon W M, Zepp R G.Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter[J]. Limnology and Oceanography, 2000, 45(6): 1 254-1 264.
[53] Sarah L C G, Richard S, Richard S L, et al. Reconciliation of the carbon budget in the ocean’s twilight zone[J]. Nature, 2014, 507(7 493): 480-483.
[54] Hansell D A, Carlson C A, Schlitzer R.Net removal of major marine dissolved organic carbon fractions in the subsurface ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): 1-9.
[55] Raymond P A, Bauer J E.Riverine export of aged terrestrial organic matter to the North Atlantic Ocean[J]. Nature,2001, 409(6 819): 497-500.
[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[3] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[4] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[5] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[6] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[7] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[8] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[9] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[10] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[11] 陈小梅, 闫俊华, 林媚珍, 褚国伟, 吴建平, 张德强. 南亚热带森林植被恢复演替中土壤有机碳组分及其稳定[J]. 地球科学进展, 2016, 31(1): 86-93.
[12] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[13] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[14] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[15] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
阅读次数
全文


摘要