Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (6): 668-679    DOI: 10.11867/j.issn.1001-8166.2015.06.0668
综述与评述     
土壤湿度遥感估算同化研究综述
兰鑫宇, 郭子祺, 田野, 雷霞, 王婕
中国科学院遥感与数字地球研究所,北京 100101
Review in Soil Moisture Remote Sensing Estimation Based on Data Assimilation
Lan Xinyu, Guo Ziqi, Tian Ye, Lei Xia, Wang Jie
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(1373 KB)  
摘要:

土壤湿度是影响气候的至关重要的变量之一。利用数据同化方法反演大规模高精度土壤湿度数据是目前土壤水分研究的一个重要方向。结合国内外土壤湿度遥感估算研究现状,总结了土壤水分同化算法主要应用进程,梳理了目前实现土壤水分反演且应用广泛的陆面过程模型,Noah模型、通用陆面过程模型CLM、简单生物圈模型SiB2、北方生产力模拟模型BEPS,介绍了大范围卫星土壤水分数据集,包括陆面同化系统数据集、ASCAT数据集、AMSRE数据集及SMOS数据集,最后探讨了遥感土壤水分同化过程中存在的问题及发展方向。

关键词: 陆面过程模型数据同化遥感数据集土壤湿度    
Abstract:

Soil moisture is one of the critical variables that affect climate. Retrieving large-scale and high-precision soil moisture data with data assimilation technology is an important issue to study soil moisture. Combining with research status at home and abroad in estimating soil moisture, we sum up the major application process of assimilation algorithm in soil moisture, introduce the widely used land surface model which can retrieve the soil moisture, Noah, Common Land Model (CLM), Simple Biosphere Model (SiB2), North productivity simulation model (BEPS), introduce a wide range of soil moisture satellite data sets including the land surface data assimilation system data sets, ASCAT data sets, AMSR-E data sets and SMOS data sets, and finally discuss the problems and development direction of soil moisture in the process of assimilation.

Key words: Data assimilation    Land surface process model    Soil moisture    Remote sensing data sets.
出版日期: 2015-06-25
:  P934  
基金资助:

“十二五”国家科技支撑计划项目“村镇环境快速检测与动态监测装备研发”(编号:2012BAJ24B02)资助

通讯作者: 郭子祺(1963-),男,陕西西安人,研究员,主要从事环境遥感研究.     E-mail: guozq@radi.ac.cn
作者简介: 兰鑫宇(1991-),女,黑龙江海伦人,硕士研究生,主要从事土壤水分同化研究. E-mail:lanxy@radi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田野
兰鑫宇
郭子祺
王婕
雷霞

引用本文:

兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.

Lan Xinyu, Guo Ziqi, Tian Ye, Lei Xia, Wang Jie. Review in Soil Moisture Remote Sensing Estimation Based on Data Assimilation. Advances in Earth Science, 2015, 30(6): 668-679.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.06.0668        http://www.adearth.ac.cn/CN/Y2015/V30/I6/668

[1] Reichle R H, Entekhabi D, McLaughlin D B. Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach[J].Water Resources Research, 2001, 37(9): 2 353-2 364.
[2] Walker J P, Houser P R. A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations[J]. Journal of Geophysical Research, 2001, 106(D11): 11 761-11 774.
[3] Ni-Meister W. Recent advances on soil moisture data assimilation[J]. Physical Geography, 2008, 29(1): 19-37.
[4] Njoku E G, Li L. Retrieval of land surface parameters using passive microwave measurements at 6 to 18 GHz[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37:79-93.
[5] McLaughlin D. Recent developments in hydrologic data assimilation[J]. Reviews of Geophysics, 1995, 33(S2): 977-984.
[6] Jia B, Xie Z, Tian X, et al. A soil moisture assimilation scheme based on the Ensemble Kalman Filter using microwave brightness temperature[J]. Science in China(Series D), 2009, 52(11): 1 835-1 848.
[7] Yang K, Koike T, Kaihotsu I, et al. Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions[J]. Journal of Hydrometeorology, 2009, 10(3): 780-793.
[8] Kumar S V, Reichle R H, Harrison K W, et al. A comparison of methods for a priori bias correction in soil moisture data assimilation[J]. Water Resources Research, 2012, 48(3),doi:10.1029/2010WR01026.
[9] Jin R, Li X. Improving the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data[J]. Science in China(Series D), 2009, 52(11): 1 732-1 745.
[10] Crosson W L, Laymon C A, Inguva R, et al. Assimilating remote sensing data in a surface flux-soil moisture model[J]. Hydrological Processes, 2002, 16(8): 1 645-1 662.
[11] Hunt B R, Kostelich E J, Szunyogh I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter[J]. Physica D: Nonlinear Phenomena, 2007, 230(1): 112-126.
[12] Entekhabi D, Nakamura H, Njoku E G. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(2): 438-448.
[13] Walker J P, Willgoose G R, Kalma J D. One-dimensional soil moisture profile retrival by assimilation of near-surface observations:A comparison of retrival algorithms[J]. Advances in Water Resources, 2001, 24(6): 631-650.
[14] Huang C, Li X, Lu L, et al. Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter[J]. Remote Sensing of Environment, 2008, 112(3): 888-900.
[15] Reichle R H, Crow W T, Keppenne C L. An adaptive ensemble Kalman filter for soil moisture data assimilation[J]. Water Resources Research, 2008, 44(3),doi:10.1029/2007WR006351.
[16] Han X, Li X. An evaluation of the nonlinearnon-Gaussian filters for the sequential data assimilation[J]. Remote Sensing of Environment, 2008, 112(4): 1 434-1 449.
[17] Moradkhani H, Hsu K L, Gupta H, et al. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter[J]. Water Resources Research, 2005, 41(5),doi:10.1029/2004WR003604.
[18] Moradkhani H, Sorooshian S, Gupta H V, et al. Dual state-parameter estimation of hydrological models using ensemble Kalman filter[J]. Advances in Water Resources, 2005, 28(2): 135-147.
[19] Moradkhani H, DeChant C M, Sorooshian S. Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method[J]. Water Resources Research, 2012, 48(12),doi:10.1029/2012 WR012144.
[20] Pauwels V, Verhoest N E C, De Lannoy G J M, et al. Optimization of a coupled hydrology-crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter[J]. Water Resources Research, 2007, 43(4),doi:10.1029/2006WR004942.
[21] Lee J H, Pellarin T, Kerr Y H. Inversion of soil hydraulic properties from the DEnKF analysis of SMOS soil moisture over West Africa[J]. Agricultural and Forest Meteorology, 2014, 188:76-88.
[22] Tian X, Xie Z, Dai A. An ensemble-based explicit four-dimensional variational assimilation method[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2008, 113(D21),doi:10.1029/2008JD010358.
[23] Tian X, Xie Z, Dai A, et al. A microwave land data assimilation system: Scheme and preliminary evaluation over China[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2010, 115(D21),doi:10.1029/2010JD014370.
[24] Tian X, Feng X. A non-linear least squares enhanced POD-4DVar algorithm for data assimilation[J]. Tellus A, 2015, 67,doi:10.3402/tellusa.v0725340.
[25] Zhang F, Zhang M, Hansen J A. Coupling ensemble Kalman filter with four-dimensional variational data assimilation[J]. Advances in Atmospheric Sciences, 2009, 26(1): 1-8.
[26] Zhang M, Zhang F. E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model[J]. Monthly Weather Review, 2012, 140(2): 587-600.
[27] Zhang F, Zhang M, Poterjoy J. E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar[J]. Monthly Weather Review, 2013, 141(3): 900-917.
[28] Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science, 2012, 27(7):747-757.[马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.]
[29] Tian Jing, Su Hongbo, Sun Xiaomin, et al. Accuracy test for the application of GDAS data and NOAH land surface model to China[J].Progress in Geography, 2011, 30(11) : 1 422-1 430.[田静,苏红波,孙晓敏,等. GDAS数据和NOAH陆面模式在中国应用的精度检验[J]. 地理科学进展, 2011, 30(11): 1 422-1 430.]
[30] Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4): 569-585.
[31] Ek M B, Mitchell K E, Lin Y, et al. Implementation of Noah land surface model advances in the National Centers for environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research, 2003, 108(D22),doi:10.1029/2002JD003296.
[32] Yang Xiaofeng, Lu Qifeng,Yang Zhongdong. Assimilation experiment of LIS based on AMSR-E soil moisture products[J]. Journal of Applied Meteorological Science, 2013, 24(4): 435-445.[杨晓峰,陆其峰,杨忠东. 基于AMSR-E土壤湿度产品的LIS同化试验[J]. 应用气象学报, 2013, 24(4): 435-445.]
[33] Bagayoko F, Yonkeu S, Van De Giesen N C. Effect of seasonal dynamics of vegetation cover on land surface models: A case study of NOAH LSM over a savanna farm land in eastern Burkina Faso, West Africa[J]. Hydrology and Earth System Sciences Discussions, 2006, 3(5): 2 757-2 788.
[34] Alfieri J G, Niyogi D, Blanken P D, et al. Estimation of the minimum canopy resistance for croplands and grasslands using data from the 2002 international H 2 O Project[J]. Monthly Weather Review, 2008, 136(11): 4 452-4 469.
[35] Bonan G B. Land surface model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and Users Guide. Technical note[R]. Boulder, CO (United States): National Center for Atmospheric Research, Climate and Global Dynamics Div., 1996.
[36] Bonan G B, Lawrence P J, Oleson K W, et al. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data[J]. Journal of Geophysical Research,2011, 116(G2),doi:10.1029/2010JG001593.
[37] Sun Y, Gu L, Dickinson R E. A numerical issue in calculating the coupled carbon and water fluxes in a climate model[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D22),doi:10.1029/2012JD018059.
[38] Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J]. International Journal of Climatology, 2005, 25(6): 693-712.
[39] Tian Xiangjun, Xie Zhenghui. Consider sub-grid variability and soil freezing and thawing of soil moisture assimilation scheme[J]. Science in China (Serise D), 2008, 38(6): 741-749.
[40] Shi C X, Xie Z H, Qian H, et al. China land soil moisture EnKFdata assimilation based on satellite remote sensing data[J]. Science in China (Serise D), 2011, 54(9): 1 430-1 440.
[41] Serpetzoglou E, Anagnostou E N, Papadopoulos A, et al. Error propagation of remote sensing rainfall estimates in soil moisture prediction from a land surface model[J]. Journal of Hydrometeorology, 2010, 11(3): 705-720.
[42] Hoppe C M, Elbern H, Schwinger J. A variational data assimilation system for soil-atmosphere flux estimates for the Community Land Model (CLM3.5)[J]. Geoscientific Model Development, 2014, 7(3): 1 025-1 036.
[43] Sellers P J, Randall D A, Collatz G J, et al. A Revised Land Surface Parameterization(SiB2) for atmospheric GCMs. Part I: Model formulation[J]. Journal of Climate, 1996, 9(4): 676-705.
[44] Sellers P J, Tucker C J, Collatz G J, et al. A revised lan Surface Parameterization (SiB2) for atmospheric GCMs. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data[J].Journal of Climate,1996, 9(4): 706-737.
[45] Huang Chunlin, Li Xin. Experiments of soil moisture data assimilation system based on Ensemble Kalman Filter[J]. Plateau Meteorology, 2006, 25(4): 665-671.[黄春林,李新. 基于集合卡尔曼滤波的土壤水分同化试验[J]. 高原气象, 2006, 25(4): 665-671.]
[46] Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget[J]. Journal of the Meteorological Society of Japan, 2007, 85A:229-242.
[47] Gao Z, Chae N, Kim J, et al. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2)[J]. Journal of Geophysical Research, 2004, 109(D6),doi:10.1029/2003JD004089.
[48] Fu X, Yu Z, Luo L, et al. Investigating soil moisture sensitivity to precipitation and evapotranspiration errors using SiB2 model and ensemble Kalman filter[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(3): 681-693.
[49] Govind A, Chen J M, Margolis H, et al. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America[J]. Journal of Hydrology, 2009, 367(3/4): 200-216.
[50] Liu Zhao, Zhou Yanlian, Ju Weimin, et al. Simulation of soil water content in farm lands with the BEPS ecological model[J]. Transactions of the CSAE, 2011, 27(3): 67-72.[刘昭,周艳莲,居为民, 等. 基于BEPS生态模型模拟农田土壤水分动态[J]. 农业工程学报, 2011, 27(3): 67-72.]
[51] Wang Jinliang, Qin Qiming, Liu Mingchao, et al. Soil moisture data assimilation based on NDVI optimization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 161-167.[王金梁,秦其明,刘明超,等. 基于NDVI优化选择的土壤水分数据同化[J]. 农业工程学报, 2011, 27(12): 161-167.]
[52] Zhu L, Chen J M, Qin Q, et al. Optimization of ecosystem model parameters using spatio-temporal soil moisture information[J]. Ecological Modelling, 2009, 220(18): 2 121-2 136.
[53] de Lange R, Beck R, Van De Giesen N, et al. Scatterometer-derived soil moisture calibrated for soil texture with a one-dimensional water-flow model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12): 4 041-4 049.
[54] Zhang Xiuying, Jiang Hong, Han Ying. Land surface data assimilati on systems and their usage in global change studies[J]. Remote Sensing Information, 2010,(4): 135-143.[张秀英, 江洪, 韩英. 陆面数据同化系统及其在全球变化研究中的应用[J]. 遥感信息, 2010,(4): 135-143.]
[55] Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394.
[56] Mitchell K E, Lohmann D, Houser P R, et al. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J]. Journal of Geophysical Research, 2004, 109(D7),doi:10.1029/2003JD003823.
[57] Xia Y L, Sheffield J, Ek M B, et al. Evaluation of multi-model simulated soil moisture in NLDAS-2[J]. Journal of Hydrology, 2014, 512:107-125.
[58] Xia Y, Sheffield J, Ek M B, et al. Uncertainties, correlations, and optimal blends of drought indices from the NLDAS multiple land surface model ensemble[J]. Journal of Hydrometeorology, 2014, 15(4): 1 636-1 650.
[59] Liu Y, McCabe M, Evans J, et al. Comparison of soil moisture in GLDAS model simulations and satellite observations over the Murray Darling Basin[C]//Proceedings of the International Congress on Modelling and Simulation, 2009.
[60] Zawadzki J, Kçdzior M A. Statistical analysis of soil moisture content changes in Central Europe using GLDAS database over three past decades[J]. Central European Journal of Geosciences, 2014, 6(3): 344-353.
[61] Li Xia, Gao Yanhong, Wang Wanzhao,et al. Climate change and applicability of GLDAS in the headwater of the Yellow River Basin[J]. Advances in Earth Science, 2014, 29(4): 531-540.[李霞, 高艳红, 王婉昭, 等. 黄河源区气候变化与 GLDAS 数据适用性评估[J]. 地球科学进展, 2014, 29(4): 531-540.]
[62] Jacobs C M J, Moors E J, Ter Maat H W, et al. Evaluation of European Land Data Assimilation System (ELDAS) products using in situ observations[J]. Tellus A, 2008, 60 (5): 1 023-1 037.
[63] Qi Yuanyuan, Chen Yingying, Shi Jiancheng. Review on European land data assimilation system[J]. Remote Sensing Information, 2007, (4): 93-97.[齐媛媛,陈莹莹,施建成. 欧洲陆面数据同化系统组成,系统设计和原理简介[J]. 遥感信息, 2007, (4): 93-97.]
[64] Naeimi V, Bartalis Z, Wagner W. ASCAT soil moisture: An assessment of the data quality and consistency with the ERS Scatterometer heritage[J]. Journal of Hydrometeorology,2009, 10 (2): 555-563.
[65] Naeimi V, Bartalis Z, Wagner W. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications[J]. Meteorologische Zeitschrift, 2013, 22 (1): 5-33.
[66] Bartalis Z, Wagner W, Naeimi V, et al. Initial soil moisture retrievals from the METOP—A Advanced Scatterometer (ASCAT)[J]. Geophysical Research Letters, 2007, 34(20),doi:10.1029/2007GL031088.
[67] Bartalis Z, Wagner W, Naeimi V, et al. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France[J]. Hydrology and Earth System Sciences, 2011, 15(12): 3 829-3 841.
[68] Albergel C, Rüdiger C, Pellarin T, et al. From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations[J]. Hydrology and Earth System Sciences Discussions, 2008, 12:1 323-1 337.
[69] Albergel C, Rüdiger C, Carrer D, et al. An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France[J]. Hydrology and Earth System Sciences, 2009, 13 (2): 115-124.
[70] Brocca L, Melone F, Moramarco T, et al. ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy[J]. Remote Sensing of Environment, 2010, 114 (11): 2 745-2 755.
[71] Wagner W, Hahn S, Kidd R, et al. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications[J]. Meteorologische Zeitschrift, 2013, 22(1): 5-33.
[72] Paulik C, Dorigo W, Wagner W, et al. Validation of the ASCAT soil water index using in situ data from the international soil moisture network[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 30:1-8.
[73] Jackson T J, Cosh M H, Bindlish R, et al. Validation of advanced microwave scanning radiometer soil moisture products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4 256-4 272.
[74] Sahoo A K, Zhan X, Arsenault K, et al. Cross-Validation of Soil Moisture Data from AMSR-E Using Field Observations and NASA’s Land Data Assimilation System Simulations[Z].American Meteorological Society, 2006.
[75] Reichle R H, Koster R D, Liu P, et al. Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR)[J]. Journal of Geophysical Research, 2007, 112(D9), doi:10.1029/2006JD008033.
[76] Brocca L, Hasenauer S, Lacava T, et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe[J]. Remote Sensing of Environment, 2011, 115 (12): 3 390-3 408.
[77] Chen Y, Yang K, Qin J, et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118 (10): 4 466-4 475.
[78] Kerr Y H, Waldteufel P, Wigneron J P, et al. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) Mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1 729-1 735.
[79] Muoz-Sabater J, de Rosnay P, Jiménez C, et al. SMOS brightness temperature angular noise: Characterization, filtering, and validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (9): 5 827-5 839.
[80] Zhao L, Yang K, Qin J, et al. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau[J]. Remote Sensing of Environment, 2014, 152:345-355.
[81] Al-Yaari A, Wigneron J P, Ducharne A, et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates[J]. Remote Sensing of Environment, 2014, 149:181-195.
[82] Al-Yaari A, Wigneron J P, Ducharne A, et al. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land)[J]. Remote Sensing of Environment, 2014, 152:614-626.
[83] Chen Shulin, Liu Yuanbo, Wen Zuomin. Satelliteretrieval of soil moisture: An overview[J]. Advances in Earth Science, 2012, 27(11) :1 192-1 203.[陈书林, 刘元波, 温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27 (11): 1 192-1 203.]
[84] Zhang S W, Li D Q, Qiu C J. A multimodel ensemble-based Kalman Filter for the retrieval of soil moisture profiles[J]. Advances in Atmospheric Sciences, 2011, 28(1): 195-206.

[1] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[2] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[3] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[4] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[5] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[6] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[7] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[8] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[9] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[10] 李新,摆玉龙. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展, 2010, 25(5): 515-522.
[11] 苟浩锋,刘彦华,张述文,李得勤. 评估集合卡曼滤波反演土壤湿度廓线的性能[J]. 地球科学进展, 2010, 25(4): 400-407.
[12] 邢雅娟,刘东生,王鹏新. 遥感信息与作物生长模型的耦合应用研究进展[J]. 地球科学进展, 2009, 24(4): 444-451.
[13] 王晓婷,郭维栋,钟中,崔晓燕. 中国东部土壤温度、湿度变化的长期趋势及其与气候背景的联系[J]. 地球科学进展, 2009, 24(2): 181-191.
[14] 周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.
[15] 韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.