地球科学进展 ›› 2015, Vol. 30 ›› Issue (6): 700 -708. doi: 10.11867/j.issn.1001-8166.2015.06.0700

研究论文 上一篇    下一篇

模式时间关联误差对集合平方根滤波估算土壤湿度的影响
毛伏平 1, 2, 张述文 1, 叶丹 1, 杨茜茜 1   
  1. 1. 兰州大学大气科学学院,甘肃省干旱气候变化与减灾重点实验室,甘肃 兰州 730000; 2. 中国人民解放军94923部队,福建 武夷山 354301
  • 出版日期:2015-06-25
  • 通讯作者: 张述文(1966-),男,河南固始人,教授,主要从事资料同化、陆面过程模式和模拟研究. E-mail:zhangsw@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目“有预报误差的土壤湿度估算研究”(编号:41075074)资助

Impact of Time Correlated Model Errors on Soil Moisture Estimates with the Ensemble Square Root Filter

Mao Fuping 1, 2, Zhang Shuwen 1, Ye Dan 1, Yang Xixi 1   

  1. 1. Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; 2. Unit of 94923 of the Chinese Pepoles’s Liberation Army, Mount Wuyi, 354301, China
  • Online:2015-06-25 Published:2015-06-25

为了定量评估模式时间关联误差对NOAH陆面模式同化表层土壤湿度观测估算土壤湿度廓线的影响,采用集合平方根滤波(EnSRF)与状态增广相结合的技术,开展同时更新状态变量和订正模式偏差的观测系统模拟试验,结果表明:同化时若不对存在较大系统性偏差的模式时间关联误差进行处理,EnSRF就不能有效估算土壤湿度廓线,而采用状态增广和EnSRF相结合的技术,可以在更新土壤湿度时同步订正模式偏差,土壤湿度估算精度明显提高。敏感性试验进一步表明:模式偏差大小、同化时间间隔和观测误差会以不同方式对同化结果造成影响。

To evaluate the impacts of time correlated error models on the estimates of soil moisture profiles with the Ensemble Square Root Filter (EnSRF), an observing system simulation experiment was set up, in which the near-surface soil moisture observations were assimilated into NOAH Land Surface Model (LSM). The experiments used a combination technique of EnSRF and state augmentation, in which both the model states and model errors were updated at the same time. The results showed that EnSRF could not successfully estimate the soil moisture profiles, if a large model bias was directly ignored in the process of data assimilation. On the contrary, the soil moisture estimates had a large improvement, if the model errors were corrected. Furthermore, the sensitive tests showed that the value of model bias,the magnitudes of observational errors and the time intervals would all influence the estimates in the different way.

中图分类号: 

[1] McLaughlin D. Recent developments in hydrologic data assimilation[J]. Reviews of Geophysics, 1995, 33(Suppl. 2): 977-984.
[2] Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects[J]. Progress in Natural Science, 2007, 17(8): 881-892.[李新,黄春林,车涛,等.中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展,2007,17(2): 163-173.]
[3] Bai Yulong, Li Xin, Han Xujun. A review of error problems for land data assimilation systems[J]. Advances in Earth Science, 2011, 26(8): 795-804.[摆玉龙,李新,韩旭军.陆面数据同化系统误差问题研究综述[J].地球科学进展,2011, 26(8): 795-804.]
[4] Evensen G. Data Assimilation: The Ensemble Kalman Filter[M]. Berlin, Heidelberg: Springer, 2007: 279.
[5] Reichle R H. Data assimilation methods in the Earth sciences[J]. Advances in Water Resources, 2008, 31(11): 1 411-1 418.
[6] Chen Jing, Chen Dehui, Yan Hong. A brief review on the development of ensemble prediction system[J]. Journal of Applied Meteorological Science, 2002, 13(4): 497-507.[陈静,陈德辉,颜宏.集合数值预报发展与研究进展[J].应用气象学报,2002,13(4): 497-507.]
[7] Nie Suping, Zhu Jiang, Luo Yong. Comparison experiments of different model error schemes in ensemble Kalman filter soil moisture assimilation [J]. Chinese Journal of Atmospheric Sciences,2010, 34(3): 580-590.[聂肃平,朱江,罗勇.不同模式误差方案在集合Kalman滤波土壤湿度同化中的比较试验[J].大气科学,2010, 34(3): 580-590.]
[8] Dee D P, Da Silva A M. Data assimilation in the presence of forecast bias[J]. Quarterly Journal of the Royal Meteorological Society, 1998, 124(545): 269-295.
[9] Zhong Jian, Huang Sixun, Fei Jianfang, et al. Dynamics of model errors: Accounting for parameters error and processes lacking error[J]. Chinese Journal of Atmospheric Sciences, 2011,35(6): 1 169-1 176.[钟剑,黄思训,费建芳,等.模式误差动力特征:模式参数误差和物理过程描绘缺失误差[J].大气科学,2011, 35(6): 1 169-1 176.]
[10] Crow W T, Van Loon E. Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture[J]. Journal of Hydrometeorology, 2006, 7(3): 421-432.
[11] Zhang S W, Zeng X, Zhang W, et al. Revising the ensemble-based Kalman filter covariance for the retrieval of deep-layer soil moisture[J]. Journal of Hydrometeorology, 2010, 11(1): 219-227.
[12] Dee D P. Bias and data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3 323-3 343.
[13] Drécourt J P, Madsen H, Rosbjerg D. Bias aware Kalman filters: Comparison and improvements[J]. Advances in Water Resources, 2006, 29(5): 707-718.
[14] Drécourt J P, Madsen H, Rosbjerg D. Calibration framework for a Kalman filter applied to a groundwater model[J]. Advances in Water Resources, 2006, 29(5): 719-734.
[15] Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7): 1 913-1 924.
[16] Koster R D, Suarez M J. Soil moisture memory in climate models[J]. Journal of Hydrometeorology, 2001, 2(6): 558-570.
[17]Mahrt L, Pan H. A two-layer model of soil hydrology[J]. Boundary-Layer Meteorology, 1984, 29(1): 1-20.
[18] Liu Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science, 2013, 28(8): 913-922.[刘彦华,张述文,毛璐,等.评估两类模式对陆面状态的模拟和估算[J].地球科学进展, 2013, 28(8): 913-922.]
[19] Campbell G S. A simple method for determining unsaturated conductivity from moisture retention data[J]. Soil Science, 1974, 117(6): 311-314.
[20] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Fluids Engineering, 1960, 82(1): 35-45.
[21] Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J].Monthly Weather Review, 2001, 129(12): 2 884-2 903.
[22] Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003, 53(4): 343-367.
[23] Kalnay E. Atmospheric Modeling, Data Assimilation, and Predictability[M]. Cambridge:Cambridge University Press, 2003:341.
[24] Houtekamer P L, Mitchell H L. Data assimilation using an ensemble Kalman filter technique[J]. Monthly Weather Review, 1998, 126(3): 796-811.

[1] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[2] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[3] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[4] 苟浩锋,刘彦华,张述文,李得勤. 评估集合卡曼滤波反演土壤湿度廓线的性能[J]. 地球科学进展, 2010, 25(4): 400-407.
[5] 王晓婷,郭维栋,钟中,崔晓燕. 中国东部土壤温度、湿度变化的长期趋势及其与气候背景的联系[J]. 地球科学进展, 2009, 24(2): 181-191.
[6] 周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.
[7] 韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.
[8] 关止,赵凯,宋冬生. 利用反射GPS信号遥感土壤湿度[J]. 地球科学进展, 2006, 21(7): 747-750.
[9] 张生雷,谢正辉,田向军,师春香,陈锋. 基于土壤水模型及站点资料的土壤湿度同化方法[J]. 地球科学进展, 2006, 21(12): 1350-1362.
[10] 李新,小池俊雄,程国栋. 一个基于模拟退火法的陆面数据同化算法[J]. 地球科学进展, 2003, 18(4): 632-636.
[11] 马柱国,符淙斌,谢力,陈文海,陶树望. 土壤湿度和气候变化关系研究中的某些问题[J]. 地球科学进展, 2001, 16(4): 563-566.
[12] 马柱国,魏和林,符淙斌. 土壤湿度与气候变化关系的研究进展与展望[J]. 地球科学进展, 1999, 14(3): 299-305.
阅读次数
全文


摘要