Please wait a minute...
img img
高级检索
地球科学进展  2008, Vol. 23 Issue (9): 965-973    DOI: 10.11867/j.issn.1001-8166.2008.09.0965
综述与评述     
数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用
周剑1,3,王根绪1,2,李新1,杨永民3,潘小多1
1. 中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;2. 中国科学院成都山地灾害与环境研究所,四川 成都 610041;3. 兰州大学资源环境学院,甘肃 兰州 730000
Data Assimilation Algorithm Apply to Energy-Water Balance Analysis of the High Cold Ecosystem at Qinghai-Tibet Plain, Northwest China
Zhou Jian1,3,Wang Genxu1,2,Li Xin1,Yang Yongmin3,Pan Xiaoduo1
1.Cold and Arid Regions Environmental and Engineering Research Institute , Chinese Academy of Sciences, Lanzhou 730000, China; 2. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, Chengdu 610041, China; 3. Resources and Environment Institute of Lanzhou University, Lanzhou 730000, China
 全文: PDF(1962 KB)  
摘要:

位于青藏高原腹地的多年冻土地带,其冻融过程中的土壤含水量和土壤冻结深度的变化对气候强烈响应并产生显著的陆面能—水平衡变化,进而又对全球气候产生较大的反馈作用。为了能准确模拟这种变化,选取青藏高原多年冻土分布区的风火山左冒孔流域(长江源)进行了相关的野外数据采集和试验,以考虑土壤冻融影响的水—热耦合陆面过程模型——SHAW为动力学约束框架,验证集合卡尔曼滤波算法在改进模型对土壤冻融过程中土壤水分和冻土深度的计算效果。基于试验点的数据同化计算结果表明:数据同化方法可以融合观测信息显著提高水—热耦合模型对土壤冻融过程中状态变量(土壤水分和冻深)的模拟,并进而改善模型对其它相关能量—水分变量的计算,为在高寒冻土地区利用多源信息进行融合监测提供了理论依据。

关键词: 冻土土壤水分陆面数据同化陆面过程模型——SHAW集合卡尔曼滤波    
Abstract:

The frozen soil region of many years located in the Qinghai-Tibet Plain hinterland, Changing of the Water content of soil during freeze-thaw process, intensely responds to climate change and brings remarkable change on land energy-water balance, then has the large feedback function to the global climate. In order to reveal this kind of change, we used the observation data from the wind volcano testing field system, selected water-heat coupling model SHAW as dynamics restraint frame, which consider the influence of snow cover & the vegetation cover & the forest flooring to the soil freezing and thawing, and improved SHAW forecast capacity to the soil moisture content and the frozen soil depth by Ensemble Kalman Filter of data simulation method. The analysis based on data assimilation theory indicate that the data assimilation method may remarkably enhance the forecasting ability of water-heat coupling model to state variables, and provide theory basis for monitor utilizing multiple source information in frozen soil area.

Key words: Frozen-soil    Soil moisture content    Land surface process model    Land data assimilation    Ensemble Kalman filter.
收稿日期: 2008-01-02 出版日期: 2008-09-10
:  P642.14  
基金资助:

国家重点基础研究发展计划项目“我国冰冻圈动态过程及其对气候、水文和生态的影响机理与适应对策”(编号:2007CB411504);国家自然科学重点项目“典型山地水文生态系统水循环多尺度耦合的对比试验研究”(编号:40730634)资助.

通讯作者: 周剑     E-mail: zhoujianmaomi@163.com
作者简介: 周剑(1979-),男,浙江杭州人,助理研究员,主要从事地下水、路面过程的研究.E-mail:zhoujianmaomi@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李新
潘小多
周剑
杨永民
王根绪

引用本文:

周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.

Zhou Jian,Wang Genxu,Li Xin,Yang Yongmin,Pan Xiaoduo. Data Assimilation Algorithm Apply to Energy-Water Balance Analysis of the High Cold Ecosystem at Qinghai-Tibet Plain, Northwest China. Advances in Earth Science, 2008, 23(9): 965-973.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2008.09.0965        http://www.adearth.ac.cn/CN/Y2008/V23/I9/965

[1] Li Xin,Cheng Guodong. Review of model of the permafrost-climate model[J]. Journal of Glaciology and Geocryology,2002,243:315-321.[李新,程国栋.冻土气候关系模型评述[J].冰川冻土,2002,243:315-321.]

[2] Allison I,Barry R G,Goodison B E. Climate and CryosphereCliC project science and coordination plan version 1[Z]. WCRP-114/WMO/TD No.1053,2001.

[3] Jin H J,Brown J. Great challenges of and innovative solutions to the unstable permafrost in central and high Asia under a warming climate[J]. Episodes,2007,301:54-55.

[4] Daley R. Atmospheric Data Analysis[M]. New York:Cambridge University Press,1991:1-457.

[5] Talagrand O. Assimilation of observations,an introduction[J]. Journal of the Meteorological Society of Japan,1997,751B:191-209.

[6] Li Xin,Huang Chunlin,Che Tao,et al. The progress and outlook of China's land surface data assimilation system[J]. Progress in Nature Science,2007,172:163-173.[李新,黄春林,车涛,.中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展,2007,172:163-173.]

[7] England A W,DeRoo R. Active layer thickness and moisture content of arctic tundra from SVAT/Radiobrightness models and assimilated 1.4 or 6.9 GHz brightness[R]. Final Report of NSF Award,ID 0240747,2006.

[8] Flerchinger G N,Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system.theory and development[J]. Transactions of the ASAE,1989,322:565-571.

[9] Nassar I N,Horton R,Flerchinger G N. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions[J]. Soil Science,2000,1653:208-216.

[10] Zheng Xiuqing,Fan Guisheng,Xing Shuyan. Moisture Content Movement in Seasonal Non-saturated Freezing and Thawing Soil[M]. Beijing: Geological Press,2002.[郑秀清,樊贵盛,邢述彦. 水分在季节性非饱和冻融土壤中的运动[M].北京:地质出版社,2002.]

[11] Yang K,Koike T,Ye B,et al. Inverse analysis of the role of soil vertical hetero-geneity in controlling surface soil state and energy partition[J]. Journal of Geophysical Research,2005,110,D08101,doi:10.1029/2004JD005500.

[12] Fuchs M,Campbell G S,Papendick R I. An analysis of sensible and latent heat flow in a partially frozen unsaturated soil[J]. Soil Science Society of America Journal,1978,423:379-385.

[13] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics[J]. Journal of Geophysical Research,1994,99C5:10 143-10 162.

[14] Evensen G.The ensemble Kalman filter: Theoretical formulation and practical implementat-ion[J]. Ocean Dynamics,2003,53:343-367.

[15] Burgers G,van Leeuwen P J,Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review,1998,126:1 719-1 724.

[16] Houtekamer P L,Mitchell H L. Data assimilation using an ensemble Kalman filter technique[J]. Monthly Weather Review,1998,126:796-811.

[17] Houtekamer P L,Mitchell H L.A sequential ensemble Kalman filter for atmospheric data assimilation[J]. Monthly Weather Review,2001,129:123-137.

[18] Keppenne C L.Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter[J]. Monthly Weather Review,2000,128:1 971-1 981.

[19] Mitchell H L,Houtekamer P L. An adaptive ensemble Kalman filter[J]. Monthly Weather Review,2000,128:416-433.

[20] Whitaker J S,Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review,2002,130:1 913-1 924.

[21] Brusdal K,Brankart J M,Evensen G,et al. A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems[J]. Journal of Marine Systems,2003,40/41:253-289.

[22] Reichle R H,Entekhabi D. Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach[J]. Water Resources Research, 2001,379:2 353-2 364.

[23] Reichle R H,Walker J P,Koster R D,et al. Extended versus ensemble filtering for land data assimilation[J]. Journal of hydrometeorology,2002,3:728-740.

[24] Reichle R H,McLaughlin D B,Entekhabi D. Hydrologic data assimilation with the ensemble Kalman filter[J]. Monthly Weather Review,2002,130:103-114.

[25] Moradkhani H,Sorooshian S,Gupta H V,et al. Dual state-parameter estimation of hydrolog-ical models using ensemble kalman filter[J]. Advances in Water Resources,2005,28:135-147.

[26] Zhou Jian,Li Xin,Wang Genxu,et al. Coupled land surface process pattern SIB2 with the unsaturated seepage model and its application[J]. Advances in Earth Science,2008,236:570-579.[周剑,李新,王根绪,.陆面过程模式SIB2与包气带入渗模型的耦合及其应用[J].地球科学进展,2008,236:570-579.]

[1] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[2] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
[3] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[4] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[5] 高江波, 吴绍洪, 戴尔阜, 侯文娟. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6): 647-653.
[6] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[7] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[8] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[9] 夏利江, 周国庆, 刘宇翼, 王涛, 阴琪翔. 青藏铁路旱桥桥面遮阳对桥下及周边冻土太阳辐射影响[J]. 地球科学进展, 2014, 29(3): 380-387.
[10] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究*[J]. 地球科学进展, 2014, 29(2): 295-305.
[11] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[12] 牛富俊,董晟,林战举,鲁嘉濠,罗京. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.
[13] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[14] 王康, 张廷军. 中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J]. 地球科学进展, 2013, 28(11): 1269-1275.
[15] 朱忠礼,林柳莺,徐同仁. 海河流域不同下垫面土壤水分动态模拟研究[J]. 地球科学进展, 2012, 27(7): 778-787.