地球科学进展 ›› 2010, Vol. 25 ›› Issue (5): 515 -522. doi: 10.11867/j.issn.1001-8166.2010.05.0515

研究论文 上一篇    下一篇

顺序数据同化的Bayes滤波框架
李新 1,摆玉龙 1, 2
   
  1. 1. 中国科学院寒区旱区环境与工程研究所,甘肃  兰州  730000;
    2. 西北师范大学物理与电子工程学院,甘肃  兰州  730070
  • 收稿日期:2009-07-31 修回日期:2010-02-24 出版日期:2010-05-10
  • 通讯作者: 李新 E-mail:lixin@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目“陆面数据同化中的贝叶斯滤波方法研究”(编号:40771036);国家杰出青年科学基金项目“流域尺度陆面数据同化系统研究”(编号:40925004);公益性行业(气象)科研专项经费“中国气候系统协同观测与预测研究”(编号:GYHY200706005)资助

A Bayesian Filter Framework for Sequential Data Assimilation

LiXin 1,Bai Yulong 1,2   

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou  730000, China; 
    2. College of Physics and Electrical Engineering, Northwest Normal University, Lanzhou  730070, China
  • Received:2009-07-31 Revised:2010-02-24 Online:2010-05-10 Published:2010-05-10
  • Supported by:

    李新(1969),男,甘肃酒泉人,博士,研究员,主要从事陆面数据同化、遥感和GIS在冰冻圈和水文水资源研究中的应用、流域集成研究.E-mail:lixin@lzb.ac.cn 

 数据同化是在动力学模型的运行过程中不断融合新的观测信息的方法论,Bayes理论是数据同化的基石。从原理、方法和符号系统为Bayes滤波在数据同化中的应用勾勒一个统一的框架。首先对连续数据同化和顺序数据同化的各种方法做了分类,然后给出了非线性系统顺序数据同化的Bayes递推滤波形式,并在此基础上介绍了典型的顺序数据同化方法——粒子滤波和集合Kalman滤波。粒子滤波实质上是一种基于递推Bayes估计和Monte Carlo模拟的滤波方法,而集合Kalman滤波相当于一种权值相等的粒子滤波。Bayes滤波理论为顺序数据同化提供了更广义的理论框架,从基础的数学理论上揭示了数据同化的基本原理。

 Data assimilation is a method in which the observations can be merged with model states by taking advantage of consistent constraints from model physics. The Bayes theory can be considered as the very foundation for data assimilation. The purpose of this paper is to provide a unified theory and notation for the application of Bayesian filter in data assimilation. First, various methods of continuous and sequential data assimilation are classified. Secondly, the sequential data assimilation for nonlinear systems is generalized as a recursive Bayesian filter. Then, two typical sequential data assimilation methods, i.e., the particle filter and the ensemble Kalman filter are represented in the framework of Bayesian filter. The particle filters, in essence, is a Monte Carlo realization of recursive Bayesian filter, and the ensemble Kalman filter is equivalent to the particle filter with equal weights. The theory of Bayesian filter provides a generalized basis for the sequential data assimilation from a more fundamental mathematical viewpoint.

中图分类号: 

[1] Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects [J]. Progress in Natural Science,2007, 17(8): 881-892. [李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻 [J]. 自然科学进展, 2007, 17(2): 163-173.]
[2] Chou Jifan. Theory and New Method in Four Dimensional Data Assimilation [R]. Lanzhou: Department of Atmospheric Science, Lanzhou University, 1994. [丑纪范. 四维同化的理论和新方法 [R]. 兰州: 兰州大学大气科学系, 1994.]
[3] Daley R. Atmospheric Data Analysis [M]. New York: Cambridge University Press, 1991:457.
[4] Talagrand O. Assimilation of observations, an introduction [J]. Journal of the Meteorological Society of Japan,1997, 75(1B): 191-209.
[5] National Research Council, Panel on Model-Assimilated Data Sets for Atmospheric and Oceanic Research. Four Dimensional Model Assimilation of Data [M]. Washington DC: National Academy Press, 1991:78.
[6] Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M].Cambridge:Cambridge University Press, 2002:512.
[7] Courtier P. Variational methods [J]. Journal of the Meteorological Society of Japan, 1997, 75(1B): 211-218.
[8] Li X, Koike T, Mahadevan P. A very fast simulated re-annealing (VFSA) approach for land data assimilation [J]. Computers and Geosciences, 2004, 30(3): 239-248.
[9] Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget [J]. Journal of the Meteorological Society of Japan, 2007, 85A: 229-242.
[10] Evensen G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation [J]. Ocean Dynamics,2003, 53: 343-367.
[11] Evensen G. Data Assimilation, the Ensemble Kalman Filter [M]. Berlin, Heidelberg: Springer, 2007:279.
[12] Han X J, Li X. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation [J]. Remote Sensing of Environment,2008, 112(4): 1 434-1 449.
[13] Han Xujun, Li Xin. Review of nonlinear filters in the land data assimilation [J]. Advances in Earth Science, 2008, 23(8): 813-820. [韩旭军, 李新.非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.]
[14] Huang Chunlin, Li Xin. Application of unscented Kalman filter for data assimilation [J]. Journal of Tropical Meteorology, 2007, 23(6): 617-622. [黄春林, 李新. UKF滤波算法在数据同化中的应用[J]. 热带气象学报, 2007, 23(6): 617-622.]
[15] Nakano S, Ueno G, Higuchi T. Merging particle filter for sequential data assimilation [J]. Nonlinear Processes in Geophysics,2007, 14(4): 395-408.
[16] Weerts A H, El Serafy G. Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models [J]. Water Resources Research,2006, 42,W0940,doi:10.1029/2005WR004093.
[17] Ide K, Courtier P, Ghil M, et al. Unified notation for data assimilation: Operational, sequential and variational [J]. Journal of the Meteorological Society of Japan,- 1997, 75(1B): 181-189.
[18] Han Chongzhao, Zhu Hongyan, Duan Zhansheng. Multi-source Data Fusion [M]. Beijing: Tsinghua University Press, 2006:488.[韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 北京: 清华大学出版社, 2006:488.]
[19] Lorenc A C. Atmospheric Data Assimilation [R]. Scientific Paper No 34, Bracknell: Forecasting Research, Meteorological Office, 1995.
[20] Pham D T. Stochastic methods for sequential data assimilation in strongly nonlinear systems [J]. Monthly Weather Review,2001, 129(5): 1 194-1 207.
[21] Moradkhani H, Hsu K L, Gupta H, et al. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter [J]. Water Resources Research, 2005, 41,W05012,doi:10.1029/2004WR003604.
[22] Anderson J L, Anderson S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts [J]. Monthly Weather Review,1999, 127(12): 2 741-2 758.
[23] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
[24] Isard M, Blake A. CONDENSATION-conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
[25] Bergman N.Recursive Bayesian Estimation: Navigation and Tracking Applications[D]. Linköping, Sweden: Linköping University, 1999.
[26] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing,2002, 50(2): 174-188.
[27] van Leeuwen P J.A variance-minimizing filter for large-scale applications[J].Monthly Weather Review,2003,131(9):2 071-2 084.
[28] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics [J]. Journal of Geophysical Research,1994, 99(C5): 10 143-10 162.
[29] Burgers G, van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter [J]. Monthly Weather Review,1998, 126(6): 1 719-1 724.
[30] Evensen G. Sampling strategies and square root analysis schemes for the EnKF [J]. Ocean Dynamics,2004, 54(6): 539-560.
[31] Kalnay E, Li H, Miyoshi T, et al. 4D-Var or ensemble Kalman Filter? [J]. Tellus A, 2007, 59A(5): 758-773.

[1] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[2] 马明国,刘强,阎广建,陈尔学,肖青,苏培玺,胡泽勇,李新,牛铮,王维真,钱金波,宋怡,丁松爽,辛晓洲,任华忠,黄春林,晋锐,车 涛,楚荣忠. 黑河流域遥感-地面观测同步试验:森林水文和中游干旱区水文试验[J]. 地球科学进展, 2009, 24(7): 681-696.
[3] 方莉,刘强,肖青,柳钦火,刘志刚. 黑河试验中机载红外广角双模式成像仪的设计及实现[J]. 地球科学进展, 2009, 24(7): 696-705.
[4] 双喜,刘绍民,徐自为,王维真. 黑河流域观测通量的空间代表性研究[J]. 地球科学进展, 2009, 24(7): 724-733.
[5] 何祺胜,陈尔学,曹春香,刘清旺,庞勇. 基于LIDAR数据的森林参数反演方法研究[J]. 地球科学进展, 2009, 24(7): 748-755.
[6] 钱金波,马明国. 基于数码照片的狼毒盖度估算[J]. 地球科学进展, 2009, 24(7): 776-783.
[7] 陶欣,范闻捷,王大成,闫彬彦,徐希孺. 植被FAPAR的遥感模型与反演研究[J]. 地球科学进展, 2009, 24(7): 741-747.
[8] 赵天杰,张立新,蒋玲梅,陈权,张志玉,张勇攀. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 2009, 24(7): 769-775.
[9] 柴琳娜,屈永华,张立新,梁顺林,王锦地. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756-768.
[10] 张阳,柳钦火,黄华国,刘强. 大尺度辐射度模型敏感性分析及在祁连山林区的应用[J]. 地球科学进展, 2009, 24(7): 834-842.
[11] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[12] 张睿,马建文. 支持向量机在遥感数据分类中的应用新进展[J]. 地球科学进展, 2009, 24(5): 555-562.
[13] 周冠华,唐军武,田国良,李京,柳钦火. 内陆水质遥感不确定性:问题综述[J]. 地球科学进展, 2009, 24(2): 150-158.
[14] 李新,马明国,王建,刘强,车涛,胡泽勇,肖青,柳钦火,苏培玺,楚荣忠,晋锐,王维真,冉有华. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.
[15] 韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.
阅读次数
全文


摘要