[1] Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects [J]. Progress in Natural Science,2007, 17(8): 881-892. [李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻 [J]. 自然科学进展, 2007, 17(2): 163-173.] [2] Chou Jifan. Theory and New Method in Four Dimensional Data Assimilation [R]. Lanzhou: Department of Atmospheric Science, Lanzhou University, 1994. [丑纪范. 四维同化的理论和新方法 [R]. 兰州: 兰州大学大气科学系, 1994.] [3] Daley R. Atmospheric Data Analysis [M]. New York: Cambridge University Press, 1991:457. [4] Talagrand O. Assimilation of observations, an introduction [J]. Journal of the Meteorological Society of Japan,1997, 75(1B): 191-209. [5] National Research Council, Panel on Model-Assimilated Data Sets for Atmospheric and Oceanic Research. Four Dimensional Model Assimilation of Data [M]. Washington DC: National Academy Press, 1991:78. [6] Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M].Cambridge:Cambridge University Press, 2002:512. [7] Courtier P. Variational methods [J]. Journal of the Meteorological Society of Japan, 1997, 75(1B): 211-218. [8] Li X, Koike T, Mahadevan P. A very fast simulated re-annealing (VFSA) approach for land data assimilation [J]. Computers and Geosciences, 2004, 30(3): 239-248. [9] Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget [J]. Journal of the Meteorological Society of Japan, 2007, 85A: 229-242. [10] Evensen G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation [J]. Ocean Dynamics,2003, 53: 343-367. [11] Evensen G. Data Assimilation, the Ensemble Kalman Filter [M]. Berlin, Heidelberg: Springer, 2007:279. [12] Han X J, Li X. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation [J]. Remote Sensing of Environment,2008, 112(4): 1 434-1 449. [13] Han Xujun, Li Xin. Review of nonlinear filters in the land data assimilation [J]. Advances in Earth Science, 2008, 23(8): 813-820. [韩旭军, 李新.非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.] [14] Huang Chunlin, Li Xin. Application of unscented Kalman filter for data assimilation [J]. Journal of Tropical Meteorology, 2007, 23(6): 617-622. [黄春林, 李新. UKF滤波算法在数据同化中的应用[J]. 热带气象学报, 2007, 23(6): 617-622.] [15] Nakano S, Ueno G, Higuchi T. Merging particle filter for sequential data assimilation [J]. Nonlinear Processes in Geophysics,2007, 14(4): 395-408. [16] Weerts A H, El Serafy G. Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models [J]. Water Resources Research,2006, 42,W0940,doi:10.1029/2005WR004093. [17] Ide K, Courtier P, Ghil M, et al. Unified notation for data assimilation: Operational, sequential and variational [J]. Journal of the Meteorological Society of Japan,- 1997, 75(1B): 181-189. [18] Han Chongzhao, Zhu Hongyan, Duan Zhansheng. Multi-source Data Fusion [M]. Beijing: Tsinghua University Press, 2006:488.[韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 北京: 清华大学出版社, 2006:488.] [19] Lorenc A C. Atmospheric Data Assimilation [R]. Scientific Paper No 34, Bracknell: Forecasting Research, Meteorological Office, 1995. [20] Pham D T. Stochastic methods for sequential data assimilation in strongly nonlinear systems [J]. Monthly Weather Review,2001, 129(5): 1 194-1 207. [21] Moradkhani H, Hsu K L, Gupta H, et al. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter [J]. Water Resources Research, 2005, 41,W05012,doi:10.1029/2004WR003604. [22] Anderson J L, Anderson S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts [J]. Monthly Weather Review,1999, 127(12): 2 741-2 758. [23] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113. [24] Isard M, Blake A. CONDENSATION-conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28. [25] Bergman N.Recursive Bayesian Estimation: Navigation and Tracking Applications[D]. Linköping, Sweden: Linköping University, 1999. [26] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing,2002, 50(2): 174-188. [27] van Leeuwen P J.A variance-minimizing filter for large-scale applications[J].Monthly Weather Review,2003,131(9):2 071-2 084. [28] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics [J]. Journal of Geophysical Research,1994, 99(C5): 10 143-10 162. [29] Burgers G, van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter [J]. Monthly Weather Review,1998, 126(6): 1 719-1 724. [30] Evensen G. Sampling strategies and square root analysis schemes for the EnKF [J]. Ocean Dynamics,2004, 54(6): 539-560. [31] Kalnay E, Li H, Miyoshi T, et al. 4D-Var or ensemble Kalman Filter? [J]. Tellus A, 2007, 59A(5): 758-773. |