地球科学进展 ›› 2009, Vol. 24 ›› Issue (7): 748 -755. doi: 10.11867/j.issn.1001-8166.2009.07.0748

遥感反演与估算 上一篇    下一篇

基于LIDAR数据的森林参数反演方法研究
何祺胜 1,2,3,陈尔学 3,曹春香 1*,刘清旺 3,庞  勇 3   
  1. 1.北京师范大学/中国科学院遥感应用研究所遥感科学国家重点实验室,北京  100101;
    2.中国科学院研究生院,北京  100049;  3.中国林业科学研究院资源信息研究所,林业遥感与信息技术重点开放性实验室,北京  100091
  • 收稿日期:2008-12-30 修回日期:2009-06-11 出版日期:2009-06-10
  • 通讯作者: 曹春香(1964-),女,内蒙古呼和浩特人,研究员,主要从事森林遥感与公共卫生领域空间信息技术应用研究. E-mail:cao413@irsa.ac.cn
  • 基金资助:

     国家重点基础研究发展计划项目“陆表生态环境要素主被动协同反演理论与方法”(编号:2007CB714404);中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09)资助.

A Study of Forest Parameters Mapping Technique Using Airborne LIDAR Data

He Qisheng 1,2,3,Chen Erxue 3,Cao Chunxiang 1,Liu Qingwang 3,Pang Yong 3   

  1. 1.State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing  100101, China;2.Graduate University of Chinese Academy of Sciences,Beijing  100049, China;3.Research Institute of Forest Resource Information Techniques, State Laboratory for Forest Remote Sensing and Information Techniques, Chinese Academy of Forestry, Beijing  100091, China
  • Received:2008-12-30 Revised:2009-06-11 Online:2009-06-10 Published:2009-07-10

森林结构参数诸如林分平均高、平均冠幅、平均胸径、林分密度、地上生物量等的空间分布对于森林可持续经营管理具有重要意义。以黑河流域祁连山大野口典型森林区为研究区,采用高密度LIDAR小脚印点云数据,在进行单木结构参数提取的基础上,按20 m×20 m大小的网格进行了小区域森林参数反演研究。首先由LIDAR点云数据生成冠层高度模型(Canopy Height Model,CHM),从CHM中估测单株木结构参数树的位置、树高、冠幅。然后采用多元逐步回归分析法建立样地(20 m×20 m)尺度上LIDAR估测的平均树高、冠幅等与实测森林参数(林分平均高、林分算数平均高、平均冠幅、平均胸径、林分密度、地上生物量)之间的关系。结果表明,林分平均高、林分算术平均高、地上生物量的估测方程精度较高,R2均大于0.7,平均冠幅、平均胸径、林分密度的估测方程R2均大于0.5,根据建立的方程得到了森林参数的空间分布图。高密度LIDAR数据可以得到较高精度的森林参数空间分布图,对于森林可持续经营管理以及林相图的更新等具有重要意义,同时对小流域森林水文科学的研究具有重要的应用价值。

Estimating spatial forest stand variables such as mean height, mean crown diameter, mean diameter breast height DBH, tree density and aboveground biomass is important for sustainable forest management. This study aimed to estimate forest stand variables in coniferous tree species of Picea crassifolia stand in the Qilian Mountain, western China from single tree detection using small-footprint airborne LIDAR data. Based on the LIDAR data, a canopy height model (CHM) was firstly computed as the difference between tree canopy hits and the LIDAR terrain elevation values. In this study, a double-tangents crowns recognition algorithm was used to extract single tree location, height and crown polygon.
Stepwise multiple regression models were used to develop equations relating LIDAR-derived parameters, such as tree height, stand density and crown width, with observed forest parameters for each sample plot. The precision of equation for estimating mean stand height, tree density and aboveground biomass is high, with R2 bigger than 0.7. These results showed that the LIDAR data was useful for forest stand variables. Finally, the spatial forest stand variables maps were established using the stepwise multiple regression equations. The results showed that highdensity LIDAR data could be used to get forest variables distribution maps with relatively high precision, which was of important practical significance for sustainable forest management and update of forest form map, and for forest hydrological science research in small basin.

中图分类号: 

[1] Pang Yong, Li Zengyuan, Chen Erxue, et al. LIDAR remote sensing technology and its application in forestry[J].Scientia Silvae Sinicae,2005,41(3):129-136.[庞勇,李增元,陈尔学,等. 激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):129-136.]
[2] Mats Nilsson.Estimation of tree heights and stand volume using an airborne LIDAR systems[J].Remote Sensing of Environment, 1996, 56(1):1-7.
[3] Means J E, Acker S A, Harding D J, et al. Use of large-footprint scanning airborne LIDAR to estimate forest stand characteristics in the Western Cascades of Oregon[J].Remote Sensing of Environment,1999,67(3):298-308.[4] Popescu S C, Wynne R H, Nelson R F. Estimating plot-level tree heights with LIDAR-local filtering with a canopy-height based variable window size[J].Computers and Electronics in Agriculture,2002, 37(13):71-95.
[5] Lefsky M A, Harding D, Cohen W B, et al. Surface LIDAR remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA[J].Remote Sensing of Environment,1999, 67(1):83-98.
[6] Drake J B, Dubayah R O, Clark D B, et al. Estimation of tropical forest structural characteristics using large-footprint LIDAR[J].Remote Sensing of Environment, 2002, 79(23):305-319.
[7] Lim K, Paul Treitz, Ian Morrison, et al. Estimating aboveground biomass using LIDAR remote sensing[C]//Remote Sensing for Agriculture, Ecosystems, and Hydrology IV Conference. Crete:Agia Pelagia, Greece, 2002.
[8] Pang Yong,Sun Guoqing, Li Zengyuan. Large footprint LIDAR waveform modelling of forest spatial patterns[J].Journal of Remote Sensing,2006,10(1):97-103.[庞勇,孙国清,李增元. 林木空间格局对大光斑激光雷达波形的影响模拟[J].遥感学报,2006,10(1):97-103.]
[9] Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe river basin: Scientific objectives and experiment design[J].Advances in Earth Science,2008, 23(9):897-914.[李新,马明国,王建,等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008,23(9):897-914.]
[10] Wang Jinye, Ju Kejun, Fu Huien, et al. Study on biomass of water conservation forest on north slope of Qilian mountains[J].Journal of Fujian College of Forestry,1998,18(4):319-323.[王金叶,车克钧,傅辉恩,等.祁连山水源涵养林生物量的研究[J].福建林学院学报,1998,18(4):319-323.]
[11] Liu Qingwang, Li Zengyuan, Chen Erxue, et al.Extracting individual tree heights and crowns using airborne LIDAR data[J].Journal of Beijing Forestry University,2008,30(6): 83-89.[刘清旺,李增元,陈尔学,等. 利用机制激光雷达数据提取单株木树高和树冠[J]. 北京林业大学学报,2008,30(6): 83-89.]

[1] 李新,摆玉龙. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展, 2010, 25(5): 515-522.
[2] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[3] 马明国,刘强,阎广建,陈尔学,肖青,苏培玺,胡泽勇,李新,牛铮,王维真,钱金波,宋怡,丁松爽,辛晓洲,任华忠,黄春林,晋锐,车 涛,楚荣忠. 黑河流域遥感-地面观测同步试验:森林水文和中游干旱区水文试验[J]. 地球科学进展, 2009, 24(7): 681-696.
[4] 方莉,刘强,肖青,柳钦火,刘志刚. 黑河试验中机载红外广角双模式成像仪的设计及实现[J]. 地球科学进展, 2009, 24(7): 696-705.
[5] 双喜,刘绍民,徐自为,王维真. 黑河流域观测通量的空间代表性研究[J]. 地球科学进展, 2009, 24(7): 724-733.
[6] 钱金波,马明国. 基于数码照片的狼毒盖度估算[J]. 地球科学进展, 2009, 24(7): 776-783.
[7] 陶欣,范闻捷,王大成,闫彬彦,徐希孺. 植被FAPAR的遥感模型与反演研究[J]. 地球科学进展, 2009, 24(7): 741-747.
[8] 赵天杰,张立新,蒋玲梅,陈权,张志玉,张勇攀. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 2009, 24(7): 769-775.
[9] 柴琳娜,屈永华,张立新,梁顺林,王锦地. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756-768.
[10] 张阳,柳钦火,黄华国,刘强. 大尺度辐射度模型敏感性分析及在祁连山林区的应用[J]. 地球科学进展, 2009, 24(7): 834-842.
[11] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[12] 张睿,马建文. 支持向量机在遥感数据分类中的应用新进展[J]. 地球科学进展, 2009, 24(5): 555-562.
[13] 周冠华,唐军武,田国良,李京,柳钦火. 内陆水质遥感不确定性:问题综述[J]. 地球科学进展, 2009, 24(2): 150-158.
[14] 李新,马明国,王建,刘强,车涛,胡泽勇,肖青,柳钦火,苏培玺,楚荣忠,晋锐,王维真,冉有华. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.
[15] 韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.
阅读次数
全文


摘要