Please wait a minute...
img img
高级检索
地球科学进展  2008, Vol. 23 Issue (9): 897-914    DOI: 10.11867/j.issn.1001-8166.2008.09.0897
研究论文     
黑河流域遥感—地面观测同步试验:科学目标与试验方案
李新1,马明国1,王建1,刘强2,车涛1,胡泽勇1,肖青2,柳钦火2,苏培玺1,楚荣忠1,晋锐1,王维真1,冉有华1
1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;2.中国科学院遥感应用研究所,北京 100101
Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin: Scientific Objectives and Experiment Design
Li Xin1,Ma Mingguo1,Wang Jian1,Liu Qiang2,Che Tao1,Hu Zeyong1,Xiao Qing2,Liu Qinhuo2,Su Peixi1,Chu Rongzhong1,Jin Rui1,Wang Weizhen1,Ran Youhua1
1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(2084 KB)  
摘要:

介绍了黑河流域遥感—地面观测同步试验的科学背景、科学问题、研究目标以及观测试验方案和观测系统布置。总体目标是,开展航空—卫星遥感与地面观测同步试验,为发展流域科学积累基础数据;发展能够融合多源遥感观测的流域尺度陆面数据同化系统,为实现卫星遥感对流域的动态监测提供方法和范例。以具备鲜明的高寒与干旱区伴生为主要特征的黑河流域为试验区,以水循环为主要研究对象,利用航空遥感、卫星遥感、地面雷达、水文气象观测、通量观测、生态监测等相关设备,开展航空、卫星和地面配合的大型观测试验,精细观测干旱区内陆河流域高山冰雪和冻土带、山区水源涵养林带、中游人工绿洲及天然荒漠绿洲带的水循环和生态过程的各个分量;并且以航空遥感为桥梁,通过高精度的真实性验证,发展尺度转换方法,改善从卫星遥感资料反演和间接估计水循环各分量及与之密切联系的生态和其他地表过程分量的模型和算法。由寒区水文试验、森林水文试验和干旱区水文试验,以及一个集成研究——模拟平台和数据平台建设组成。拟观测的变量划分为5大类,分别是水文与生态变量、驱动数据、植被参数、土壤参数和空气动力参数。同步试验在流域尺度、重点试验区、加密观测区和观测小区4个尺度上展开。布置了加密的地面同步观测、通量和气象水文观测、降雨、径流及其他水文要素观测网络;使用了5类机载遥感传感器,分别是微波辐射计、激光雷达、高光谱成像仪、热红外成像仪和多光谱CCD相机;获取了丰富的可见光/近红外、热红外、主被动微波、激光雷达等卫星数据。

关键词: 遥感试验水文旱区水文林水文河流域    
Abstract:

    This paper introduces the background, scientific questions, objectives, experiment design and configuration of a simultaneous airborne, satellite-borne and ground-based remote sensing experiment taking place in the Heihe River Basin, northwest China. The overall objective is to improve the observability, understanding, and predictability of hydrological and related ecological processes on catchment scale, to accumulate a comprehensive, interdisciplinary and multi-scale dataset for the development of watershed science and to promote the applicability of quantitative remote sensing in watershed science studies. The catchment scale water cycle and related ecological processes are observed by airborne remote sensing, satellite remote sensing, ground-based radar, network of hydrometeorological stations and flux towers, and ecological monitoring equipment in typical landscapes of a inland river basin, which varies from the alpine glacier-snow-permafrost zone, forest-steppe zone in high mountain area to the desert-oasis zone in middle reaches. Based on the observations, and particularly by using high-resolution airborne remote sensing to bridge the gap between satellite remote sensing and ground measurements, many models and algorithms for retrieving and estimating hydrological and ecological variables will be validated and potentially improved. Additionally, the development of scaling methods is put in high priority. The project is composed of three experiments,i.e., cold region hydrology experiment, forest hydrology experiment and arid region hydrology experiment as well as an integrated study—development of an experiment information system and a catchment scale land data assimilation system to merge multi-source and multi-scale remote sensing data into land model. Five types of data are defined to be observed, including hydrological-ecological variables, atmospheric forcing variables, vegetation parameters, soil parameters and aerodynamic parameters.
    Up to now, a very dense ground observation network has been established, which consists of automatic meteorological stations, flux towers, hydrological stations, rain gauges, rainfall radar, ground-based remote sensing instruments, other instruments and numerous experiment sites to collect ground data. Five types of the airborne remote sensor including microwave radiometer, lidar, hyperspectral imager, thermal imager and CCD camera are used to obtain plentiful airborne remote sensing data. Satellite remote sensing data covering the visible/near-infrared, thermal infrared, active and passive microwave bands are acquired.

Key words: Remote sensing experiment    Watershed science    Cold region hydrology    Arid region hydrology    Forest hydrology.
收稿日期: 2008-08-10 出版日期: 2008-09-10
:  TP79  
基金资助:

中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09);国家重点基础研究发展计划项目“陆表生态环境要素主被动遥感协同反演理论与方法”(编号:2007CB714400)资助.

通讯作者: 李新     E-mail: lixin@lzb.ac.cn
作者简介: 李新(1969-),男,甘肃酒泉人,研究员,主要从事陆面数据同化、遥感和GIS在冰冻圈和水文水资源研究中的应用、流域集成研究.E-mail:lixin@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李新
王建
肖青
柳钦火
苏培玺
楚荣忠
晋锐
王维真
冉有华
胡泽勇
车涛
刘强
马明国

引用本文:

李新,马明国,王建,刘强,车涛,胡泽勇,肖青,柳钦火,苏培玺,楚荣忠,晋锐,王维真,冉有华. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.

Li Xin,Ma Mingguo1,Wang Jian,Liu Qiang,Che Tao,Hu Zeyong,Xiao Qing,Liu Qinhuo. Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin: Scientific Objectives and Experiment Design. Advances in Earth Science, 2008, 23(9): 897-914.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2008.09.0897        http://www.adearth.ac.cn/CN/Y2008/V23/I9/897

[1] Zheng Du,Chen Shupeng. Progress and disciplinary frontiers of geographical research [J]. Advances in Earth Science,2001,165: 599-606.[郑度,陈述彭. 地理学研究进展与前沿领域[J]. 地球科学进展,2001,165:599-606.]

[2] Sellers P J,Hall F G,Asrar G,et al. The First ISLSCP Field ExperimentFIFE [J]. Bulletin of American Meteorological Society,1988,691:22-27.

[3] Sellers P,Hall F,Margolis H,et al. The Boreal Ecosystem-Atmosphere StudyBOREAS: An overview and early results from the 1994 field year[J]. Bulletin of the American Meteorological Society,1995,769:1 549-1 577.

[4] Goutorbe J P,Lebel T,Tinga A,et al. HAPEX-SAHEL—A large-scale study of land-atmosphere interactions in the semiarid tropics [J]. Annales Geophysicae,1994,121:53-64.

[5] Hu Yinqiao,Gao Youxi,Wang Jiemin,et al. Some achievements in scientific research during HEIFE [J]. Plateau Meteorology,1994,133:225-236.[胡隐樵,高由禧,王介民,. 黑河实验(HEIFE)的一些研究成果[J]. 高原气象,1994,133:225-236.]

[6] Wang Jiemin. Land surface process experiments and interaction study in China-from HEIFE to IMGRASS and GAME-Tibet/TIPEX [J]. Plateau Meteorology,1999,183:280-294.[王介民.陆面过程实验和地气相互作用研究——HEIFEIMGRASS GAME-Tibet/ TIPEX[J]. 高原气象,1999,183:280-294.]

[7] Lü Daren,Chen Zuozhong,Wang Gengchen,et al. Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction [J]. Climatic and Environmental Research,1997,23:199-209.[吕达仁,陈佐忠,王庚辰,. 内蒙古半干旱草原土壤植被大气相互作用——科学问题与实验计划概述[J]. 气候与环境研究,1997,23:199-209.]

[8] Lü Daren,Chen Zuozhong,Chen Jiayi,et al. Study on soil-vegetation-atmosphere interaction in Inner-Mongolia semi-arid grassland [J]. Acta Meteorologica Sinica, 2005,635:571-593. [吕达仁,陈佐忠, 陈家宜,. 内蒙古半干旱草原土壤植被大气相互作用综合研究[J]. 气象学报,2005,635:571-593.]

[9] Zhang Qiang,Huang Ronghui,Wang Sheng,et al. NWC-ALIEX and its research advances [J]. Advances in Earth Science,2005,204:427-441. [张强,黄荣辉,王胜,. 西北干旱区陆气相互作用试验NWC-ALIEX及其研究进展[J]. 地球科学进展,2005,204:427-441.]

[10] Cline D,Davis R E,Edelstein W,et al. Cold Land Processed Field Experiment Plan [R]. 1999.

[11] Cheng Guodong,Li Xin,Kang Ersi,et al. Integrated Model Development and Modeling Environment Building for Interdisciplinary Studies in the Heihe River Basin [R]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,CAS,2008.[程国栋,李新,康尔泗,. 黑河流域交叉集成研究的模型开发和模拟环境建设 [R]. 兰州: 中国科学院寒区旱区环境与工程研究所,2008.]

[12] Kang Ersi,Cheng Guodong,Dong Zengchuan. Glacier-Snow Water Resources and Mountain Runoff in the Arid Area of Northwest China [M]. Beijing: Science Press,2002:304.[康尔泗,程国栋,董增川. 中国西北干旱区冰雪水资源与出山径流[M]. 北京: 科学出版社,2002:304.]

[13] Wheater H S,Sorooshian S,Sharma K D. Hydrological Modelling for Arid and Semi-Arid Areas [M]. Cambridge: Cambridge University Press,2008:206.

[14] Wang Hao,Ruan Benqing,Shen Dajun. Water Price Theories and Practices for Sustainable Development [M]. Beijing: Tsinghua University Press,2003:278.[王浩,阮本清,沈大军. 面向可持续发展的水价理论与实践[M]. 北京: 清华大学出版社,2003:278.]

[15] Atkins D E,Droegemeier K K,Feldman S I,et al. Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the National Science Foundation [R]. NSF,2003.

[16] Neuse Prototype Hydrologic Observatory Design Team. Designing Hydrologic Observatories:A Paper Prototype of the Neuse Watershed[R]. Draft Version 4.0,2004.

[17] Huang Tieqing,Zhao Tao,Feng Renguo,et al. Project arrangement and primal progress in the second phase of the CAS Action Plan for West Development [J]. Advances in Earth Science,2007,229:888-895.[黄铁青, 赵涛,冯仁国,. 中国科学院西部行动计划(二期)项目布局与初步进展[J]. 地球科学进展,2007,229: 888-895.]

[18] Liang S. Quantitative Remote Sensing of Land Surfaces [M]. Hoboken,New Jersey,USA: John Wiley & Sons. Inc.,2004.

[19] Justice C,Belward A,Morisette J,et al. Developments in the validation' of satellite sensor products for the study of the land surface [J]. International Journal of Remote Sensing,2000,2117:3 383-3 390.

[20] Tian Y,Woodcock C E,Wang Y,et al. Multiscale analysis and validation of the MODIS LAI product: II. Sampling strategy [J]. Remote Sensing of Environment,2002,833:431-441.

[21] Hufkens K,Bogaert J,Dong Q H,et al. Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland [J]. Journal of Arid Environments,2008,728:1 490-1 505.

[22] Zhang Renhua. Experimental Remote Sensing Models and Its Field Foundation [M]. Beijing: Science Press, 1996.[张仁华. 实验遥感模型及地面基础[M]. 北京:科学出版社,1996.]

[23] Liang S,Fang H,Chen M,et al. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results [J]. Remote Sensing of Environment,2002,831:149-162.

[24] Goovaerts P. Geostatistics for Natural Resource Evaluation [M]. New York: Oxford University Press, 1997:483.

[1] 史文奇, 赵进平. 北欧海溢流的水文特征和变化机理综述[J]. 地球科学进展, 2017, 32(3): 245-261.
[2] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[3] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[4] 王雪梅, 张志强. 基于文献计量的社会水文学发展态势分析[J]. 地球科学进展, 2016, 31(11): 1205-1212.
[5] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[6] 郭晨, 秦勇, 卢玲玲. 黔西红梅井田煤层气有序开发的水文地质条件[J]. 地球科学进展, 2015, 30(4): 456-464.
[7] 吉琳, 庞奖励, 黄春长, 查小春, 周亚利, 刘涛, 王蕾彬. 汉江上游晏家棚段全新世古洪水研究*[J]. 地球科学进展, 2015, 30(4): 487-494.
[8] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[9] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[10] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[11] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[12] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[13] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[14] 赵春红, 李强, 梁永平, 许亮, 王维泰, 卢海平, 唐春雷. 北京西山黑龙关泉域岩溶水系统边界与水文地质性质[J]. 地球科学进展, 2014, 29(3): 412-419.
[15] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.