地球科学进展 ›› 2008, Vol. 23 ›› Issue (9): 897 -914. doi: 10.11867/j.issn.1001-8166.2008.09.0897

研究论文    下一篇

黑河流域遥感—地面观测同步试验:科学目标与试验方案
李新 1,马明国 1,王建 1,刘强 2,车涛 1,胡泽勇 1,肖青 2,柳钦火 2,苏培玺 1,楚荣忠 1,晋锐 1,王维真 1,冉有华 1   
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;2.中国科学院遥感应用研究所,北京 100101
  • 收稿日期:2008-08-10 修回日期:2008-08-21 出版日期:2008-09-10
  • 通讯作者: 李新 E-mail:lixin@lzb.ac.cn
  • 基金资助:

    中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09);国家重点基础研究发展计划项目“陆表生态环境要素主被动遥感协同反演理论与方法”(编号:2007CB714400)资助.

Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin: Scientific Objectives and Experiment Design

Li Xin 1,Ma Mingguo 1,Wang Jian 1,Liu Qiang 2,Che Tao 1,Hu Zeyong 1,Xiao Qing 2,Liu Qinhuo 2,Su Peixi 1,Chu Rongzhong 1,Jin Rui 1,Wang Weizhen 1,Ran Youhua 1   

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2008-08-10 Revised:2008-08-21 Online:2008-09-10 Published:2008-09-10

介绍了黑河流域遥感—地面观测同步试验的科学背景、科学问题、研究目标以及观测试验方案和观测系统布置。总体目标是,开展航空—卫星遥感与地面观测同步试验,为发展流域科学积累基础数据;发展能够融合多源遥感观测的流域尺度陆面数据同化系统,为实现卫星遥感对流域的动态监测提供方法和范例。以具备鲜明的高寒与干旱区伴生为主要特征的黑河流域为试验区,以水循环为主要研究对象,利用航空遥感、卫星遥感、地面雷达、水文气象观测、通量观测、生态监测等相关设备,开展航空、卫星和地面配合的大型观测试验,精细观测干旱区内陆河流域高山冰雪和冻土带、山区水源涵养林带、中游人工绿洲及天然荒漠绿洲带的水循环和生态过程的各个分量;并且以航空遥感为桥梁,通过高精度的真实性验证,发展尺度转换方法,改善从卫星遥感资料反演和间接估计水循环各分量及与之密切联系的生态和其他地表过程分量的模型和算法。由寒区水文试验、森林水文试验和干旱区水文试验,以及一个集成研究——模拟平台和数据平台建设组成。拟观测的变量划分为5大类,分别是水文与生态变量、驱动数据、植被参数、土壤参数和空气动力参数。同步试验在流域尺度、重点试验区、加密观测区和观测小区4个尺度上展开。布置了加密的地面同步观测、通量和气象水文观测、降雨、径流及其他水文要素观测网络;使用了5类机载遥感传感器,分别是微波辐射计、激光雷达、高光谱成像仪、热红外成像仪和多光谱CCD相机;获取了丰富的可见光/近红外、热红外、主被动微波、激光雷达等卫星数据。

    This paper introduces the background, scientific questions, objectives, experiment design and configuration of a simultaneous airborne, satellite-borne and ground-based remote sensing experiment taking place in the Heihe River Basin, northwest China. The overall objective is to improve the observability, understanding, and predictability of hydrological and related ecological processes on catchment scale, to accumulate a comprehensive, interdisciplinary and multi-scale dataset for the development of watershed science and to promote the applicability of quantitative remote sensing in watershed science studies. The catchment scale water cycle and related ecological processes are observed by airborne remote sensing, satellite remote sensing, ground-based radar, network of hydrometeorological stations and flux towers, and ecological monitoring equipment in typical landscapes of a inland river basin, which varies from the alpine glacier-snow-permafrost zone, forest-steppe zone in high mountain area to the desert-oasis zone in middle reaches. Based on the observations, and particularly by using high-resolution airborne remote sensing to bridge the gap between satellite remote sensing and ground measurements, many models and algorithms for retrieving and estimating hydrological and ecological variables will be validated and potentially improved. Additionally, the development of scaling methods is put in high priority. The project is composed of three experiments,i.e., cold region hydrology experiment, forest hydrology experiment and arid region hydrology experiment as well as an integrated study—development of an experiment information system and a catchment scale land data assimilation system to merge multi-source and multi-scale remote sensing data into land model. Five types of data are defined to be observed, including hydrological-ecological variables, atmospheric forcing variables, vegetation parameters, soil parameters and aerodynamic parameters.
    Up to now, a very dense ground observation network has been established, which consists of automatic meteorological stations, flux towers, hydrological stations, rain gauges, rainfall radar, ground-based remote sensing instruments, other instruments and numerous experiment sites to collect ground data. Five types of the airborne remote sensor including microwave radiometer, lidar, hyperspectral imager, thermal imager and CCD camera are used to obtain plentiful airborne remote sensing data. Satellite remote sensing data covering the visible/near-infrared, thermal infrared, active and passive microwave bands are acquired.

中图分类号: 

[1] Zheng Du,Chen Shupeng. Progress and disciplinary frontiers of geographical research [J]. Advances in Earth Science,2001,165: 599-606.[郑度,陈述彭. 地理学研究进展与前沿领域[J]. 地球科学进展,2001,165:599-606.]

[2] Sellers P J,Hall F G,Asrar G,et al. The First ISLSCP Field ExperimentFIFE [J]. Bulletin of American Meteorological Society,1988,691:22-27.

[3] Sellers P,Hall F,Margolis H,et al. The Boreal Ecosystem-Atmosphere StudyBOREAS: An overview and early results from the 1994 field year[J]. Bulletin of the American Meteorological Society,1995,769:1 549-1 577.

[4] Goutorbe J P,Lebel T,Tinga A,et al. HAPEX-SAHEL—A large-scale study of land-atmosphere interactions in the semiarid tropics [J]. Annales Geophysicae,1994,121:53-64.

[5] Hu Yinqiao,Gao Youxi,Wang Jiemin,et al. Some achievements in scientific research during HEIFE [J]. Plateau Meteorology,1994,133:225-236.[胡隐樵,高由禧,王介民,. 黑河实验(HEIFE)的一些研究成果[J]. 高原气象,1994,133:225-236.]

[6] Wang Jiemin. Land surface process experiments and interaction study in China-from HEIFE to IMGRASS and GAME-Tibet/TIPEX [J]. Plateau Meteorology,1999,183:280-294.[王介民.陆面过程实验和地气相互作用研究——HEIFEIMGRASS GAME-Tibet/ TIPEX[J]. 高原气象,1999,183:280-294.]

[7] Lü Daren,Chen Zuozhong,Wang Gengchen,et al. Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction [J]. Climatic and Environmental Research,1997,23:199-209.[吕达仁,陈佐忠,王庚辰,. 内蒙古半干旱草原土壤植被大气相互作用——科学问题与实验计划概述[J]. 气候与环境研究,1997,23:199-209.]

[8] Lü Daren,Chen Zuozhong,Chen Jiayi,et al. Study on soil-vegetation-atmosphere interaction in Inner-Mongolia semi-arid grassland [J]. Acta Meteorologica Sinica, 2005,635:571-593. [吕达仁,陈佐忠, 陈家宜,. 内蒙古半干旱草原土壤植被大气相互作用综合研究[J]. 气象学报,2005,635:571-593.]

[9] Zhang Qiang,Huang Ronghui,Wang Sheng,et al. NWC-ALIEX and its research advances [J]. Advances in Earth Science,2005,204:427-441. [张强,黄荣辉,王胜,. 西北干旱区陆气相互作用试验NWC-ALIEX及其研究进展[J]. 地球科学进展,2005,204:427-441.]

[10] Cline D,Davis R E,Edelstein W,et al. Cold Land Processed Field Experiment Plan [R]. 1999.

[11] Cheng Guodong,Li Xin,Kang Ersi,et al. Integrated Model Development and Modeling Environment Building for Interdisciplinary Studies in the Heihe River Basin [R]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,CAS,2008.[程国栋,李新,康尔泗,. 黑河流域交叉集成研究的模型开发和模拟环境建设 [R]. 兰州: 中国科学院寒区旱区环境与工程研究所,2008.]

[12] Kang Ersi,Cheng Guodong,Dong Zengchuan. Glacier-Snow Water Resources and Mountain Runoff in the Arid Area of Northwest China [M]. Beijing: Science Press,2002:304.[康尔泗,程国栋,董增川. 中国西北干旱区冰雪水资源与出山径流[M]. 北京: 科学出版社,2002:304.]

[13] Wheater H S,Sorooshian S,Sharma K D. Hydrological Modelling for Arid and Semi-Arid Areas [M]. Cambridge: Cambridge University Press,2008:206.

[14] Wang Hao,Ruan Benqing,Shen Dajun. Water Price Theories and Practices for Sustainable Development [M]. Beijing: Tsinghua University Press,2003:278.[王浩,阮本清,沈大军. 面向可持续发展的水价理论与实践[M]. 北京: 清华大学出版社,2003:278.]

[15] Atkins D E,Droegemeier K K,Feldman S I,et al. Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the National Science Foundation [R]. NSF,2003.

[16] Neuse Prototype Hydrologic Observatory Design Team. Designing Hydrologic Observatories:A Paper Prototype of the Neuse Watershed[R]. Draft Version 4.0,2004.

[17] Huang Tieqing,Zhao Tao,Feng Renguo,et al. Project arrangement and primal progress in the second phase of the CAS Action Plan for West Development [J]. Advances in Earth Science,2007,229:888-895.[黄铁青, 赵涛,冯仁国,. 中国科学院西部行动计划(二期)项目布局与初步进展[J]. 地球科学进展,2007,229: 888-895.]

[18] Liang S. Quantitative Remote Sensing of Land Surfaces [M]. Hoboken,New Jersey,USA: John Wiley & Sons. Inc.,2004.

[19] Justice C,Belward A,Morisette J,et al. Developments in the validation' of satellite sensor products for the study of the land surface [J]. International Journal of Remote Sensing,2000,2117:3 383-3 390.

[20] Tian Y,Woodcock C E,Wang Y,et al. Multiscale analysis and validation of the MODIS LAI product: II. Sampling strategy [J]. Remote Sensing of Environment,2002,833:431-441.

[21] Hufkens K,Bogaert J,Dong Q H,et al. Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland [J]. Journal of Arid Environments,2008,728:1 490-1 505.

[22] Zhang Renhua. Experimental Remote Sensing Models and Its Field Foundation [M]. Beijing: Science Press, 1996.[张仁华. 实验遥感模型及地面基础[M]. 北京:科学出版社,1996.]

[23] Liang S,Fang H,Chen M,et al. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results [J]. Remote Sensing of Environment,2002,831:149-162.

[24] Goovaerts P. Geostatistics for Natural Resource Evaluation [M]. New York: Oxford University Press, 1997:483.

[1] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[2] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[3] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
[4] 邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展, 2019, 34(6): 640-649.
[5] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[6] 夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
[7] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[8] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[9] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[10] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[11] 沈有信, 赵志猛, 毕胜春, 赵高卷, 刘娟. 陆地系统中的露石及其生态作用[J]. 地球科学进展, 2018, 33(4): 343-349.
[12] 史文奇, 赵进平. 北欧海溢流的水文特征和变化机理综述[J]. 地球科学进展, 2017, 32(3): 245-261.
[13] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[14] 王雪梅, 张志强. 基于文献计量的社会水文学发展态势分析[J]. 地球科学进展, 2016, 31(11): 1205-1212.
[15] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
阅读次数
全文


摘要