地球科学进展 ›› 2018, Vol. 33 ›› Issue (8): 874 -883. doi: 10.11867/j.issn.1001-8166.2018.08.0874

研究简报 上一篇    

一种新的耦合模糊控制局地化的同化方法
常明恒( ), 摆玉龙 *( ), 马小艳, 孟若玉, 王丽丽   
  1. 西北师范大学物理与电子工程学院,甘肃 兰州 730070
  • 收稿日期:2018-04-28 修回日期:2018-06-04 出版日期:2018-08-10
  • 通讯作者: 摆玉龙 E-mail:changmingheng@126.com;yulongbai@gmail.com
  • 基金资助:
    国家自然科学基金项目“进化计算类智能算法在数据同化误差处理中的应用研究”(编号:41461078);西北师范大学科研能力提升团队项目“智能计算理论及应用”(编号:NWNU-LKQN-1706)资助.

Localization Analysis of Data Assimilation Methods Coupled with Fuzzy Control Algorithms

Mingheng Chang( ), Yulong Bai *( ), Xiaoyan Ma, Ruoyu Meng, Lili Wang   

  1. College of Physics and Electrical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2018-04-28 Revised:2018-06-04 Online:2018-08-10 Published:2018-09-14
  • Contact: Yulong Bai E-mail:changmingheng@126.com;yulongbai@gmail.com
  • About author:

    First author:Chang Mingheng(1992-), male ,Qin'an County, Gansu Province, Master student. Research areas include data assimilation observation error. E-mail: changmingheng@126.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The application of intelligent algorithms with evolutionary computing in data assimilation about error processing”(No.41461078);The Northwest Normal University Scientific Research Improvement Team Foundation “Intelligent computing theory and application”(No.NWNU-LKQN-1706).

由于在数据同化过程中远距离的观测与同化状态之间存在着虚假相关,局地化方法受到广泛关注。同时,在集合数目较少的同化情况下,观测数据难以得到有效利用,使得同化效果欠佳。因此,提出了一种新的模糊控制局地化同化方法,通过模糊控制算法判断观测点与状态更新点之间的距离,构造观测位置模糊权重。利用非线性Lorenz-96模型,比较分析模糊控制局地化同化(FLETKF)算法与模糊控制同化(FETKF)方法、局地化分析同化(LETKF)算法和集合转换卡尔曼滤波(ETKF)算法在非线性强迫参数变化时的性能,同时探讨了4种算法在不同强度下的优劣。研究结果表明,新方法能够获得更有效的观测权重,避免了远距离观测与状态变量之间的虚假相关,减小由于观测数据难以得到有效利用而带来的误差,在不同观测误差协方差情况下,随着集合数的增加,4种算法中FLETKF能够保持较好的鲁棒性,在观测误差协方差较大时,FLETKF方法的均方根误差(RMSE)相对FETKF方法的RMSE值减小98.2%,提高了同化精度,但在同化所需时间上,由于模糊控制局地化同化方法在判断观测点与状态更新点之间的距离,构造观测位置等价权重需要较长的额外时间,因此,并行计算的性能需进一步研究。

Due to the fake correlation between distance-observations and assimilation-states during data assimilation, more attention has been paid to the localization method. Meanwhile, in the case of assimilation with a small number of sets, the observation data is difficult to be used effectively, which makes the assimilation effect not good enough. Therefore, a new fuzzy control was proposed to analyze the local method. The fuzzy control algorithm was used to judge the distance between the observation point and the status update point and to construct the fuzzy weight of the observation position. The study aimed to make use of the nonlinear Lorenz-96 model to compare the Fuzzy control combine Local Analysis algorithm (FLETKF) and Fuzzy control combine Ensemble Transform Kalman Filter method (FETKF), local Ensemble Transform Kalman Fliter (LETKF) and Ensemble Transform Kalman Filter algorithm (ETKF) when the nonlinear forced parameter changed. In addition, the strengths and weaknesses of four algorithms were discussed by different intensities. The results show that the new method can obtain more effective observation weights, avoiding the false correlation between long-distance observations and state variables, reducing the errors caused by the observation data which is difficult to be used effectively. Under different assimilation strength, FLETKF can maintain good robustness. However, in terms of assimilation time, the construction of the equivalent weight of the observation position requires additional time because the localization assimilation method of fuzzy control determines the distance between the observation point and the status update point. Parallel computing performance needs further study.

中图分类号: 

图1 耦合模糊控制的同化系统原理图
Fig.1 Schematic diagram of assimilation system coupled with the fuzzy control
图1 耦合模糊控制的同化系统原理图
Fig.1 Schematic diagram of assimilation system coupled with the fuzzy control
图2 观测位置与状态之间模糊控制同化示意图 [ 22 ]
Fig.2 Diagram of assimilation system coupled with the fuzzy control between observation position and status [ 22 ]
图2 观测位置与状态之间模糊控制同化示意图 [ 22 ]
Fig.2 Diagram of assimilation system coupled with the fuzzy control between observation position and status [ 22 ]
表1 模糊控制规则表
Table 1 The rule table of fuzzy control
表1 模糊控制规则表
Table 1 The rule table of fuzzy control
图3 三角形隶属度函数图
Fig.3 The graph of triangle membership function
图3 三角形隶属度函数图
Fig.3 The graph of triangle membership function
表2 FLETKF的模糊控制响应表
Table 2 The fuzzy control response table of FLETKF
表2 FLETKF的模糊控制响应表
Table 2 The fuzzy control response table of FLETKF
表3 FETKF的模糊控制响应表
Table 3 The fuzzy control response table of FETKF
表3 FETKF的模糊控制响应表
Table 3 The fuzzy control response table of FETKF
图4 强迫参数 F对同化结果的影响
Fig.4 The influence of forcing parameters F for assimilation results
图4 强迫参数 F对同化结果的影响
Fig.4 The influence of forcing parameters F for assimilation results
图5 随强迫参数 F变化的RMSE变化趋势
Fig.5 The variable trend of RMSE with forcing parameters F
图5 随强迫参数 F变化的RMSE变化趋势
Fig.5 The variable trend of RMSE with forcing parameters F
图6 同化强度为 R=0.001时,4种算法随集合数的变化
Fig.6 The four algorithms vary with the Ensemble number when assimilation intensity R is 0.001
图6 同化强度为 R=0.001时,4种算法随集合数的变化
Fig.6 The four algorithms vary with the Ensemble number when assimilation intensity R is 0.001
图7 同化强度为 R=1时,4种算法随集合数的变化
Fig.7 The four algorithms vary with the Ensemble number when assimilation intensity R is 1
图7 同化强度为 R=1时,4种算法随集合数的变化
Fig.7 The four algorithms vary with the Ensemble number when assimilation intensity R is 1
图8 同化强度为 R=10时,4种算法随集合数的变化
Fig.8 The four algorithms vary with the Ensemble number when assimilation intensity R is 10
图8 同化强度为 R=10时,4种算法随集合数的变化
Fig.8 The four algorithms vary with the Ensemble number when assimilation intensity R is 10
表4 4种算法在不同同化强度下的性能比较
Table 4 Comparison of performance of four algorithms at different assimilation strengths
表4 4种算法在不同同化强度下的性能比较
Table 4 Comparison of performance of four algorithms at different assimilation strengths
表5 2种算法的RMSE减小百分比
Table 5 The percentage reduction of RMSE of two algorithms
表5 2种算法的RMSE减小百分比
Table 5 The percentage reduction of RMSE of two algorithms
[1] Basar T.A New Approach to Linear Filtering and Prediction Problems[M]. Wiley-IEEE Press, 2009: 35-45. DOI:10.1109/9780470544334.ch9.
Basar T.A New Approach to Linear Filtering and Prediction Problems[M]. Wiley-IEEE Press, 2009: 35-45. DOI:10.1109/9780470544334.ch9.
[2] Han Pei, Shu Hong, Xu Jianhui, et al. An applicability study of covariance localization method in ETKF data assimilation[J]. Journal of Earth Information Science, 2016, 18(9): 1 184-1 190.
doi: 10.3724/SP.J.1047.2016.01184     URL    
Han Pei, Shu Hong, Xu Jianhui, et al. An applicability study of covariance localization method in ETKF data assimilation[J]. Journal of Earth Information Science, 2016, 18(9): 1 184-1 190.
[韩培, 舒红, 许剑辉,等. 局地化方法在集合转换卡尔曼滤波同化的适用性研究[J]. 地球信息科学学报, 2016,18(9):1 184-1 190.]
doi: 10.3724/SP.J.1047.2016.01184     URL    
[韩培, 舒红, 许剑辉,等. 局地化方法在集合转换卡尔曼滤波同化的适用性研究[J]. 地球信息科学学报, 2016,18(9):1 184-1 190.]
doi: 10.3724/SP.J.1047.2016.01184     URL    
[3] Evensen G.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10 143-10 162.
doi: 10.1029/94JC00572     URL    
Evensen G.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10 143-10 162.
doi: 10.1029/94JC00572     URL    
[4] Ehrendorfer M.A review of issues in ensemble-based Kalman filtering[J]. Meteorologische Zeitschrift, 2007,16(6): 795-818.
doi: 10.1127/0941-2948/2007/0256     URL    
Ehrendorfer M.A review of issues in ensemble-based Kalman filtering[J]. Meteorologische Zeitschrift, 2007,16(6): 795-818.
doi: 10.1127/0941-2948/2007/0256     URL    
[5] Ott E, Hunt B R, Szunyogh I, et al. A local ensemble Kalman filter for atmospheric data assimilation[J]. Tellus Series ADynamic Meteorology and Oceanography, 2004, 56(5): 415-428.
doi: 10.1111/j.1600-0870.2004.00076.x     URL    
Ott E, Hunt B R, Szunyogh I, et al. A local ensemble Kalman filter for atmospheric data assimilation[J]. Tellus Series ADynamic Meteorology and Oceanography, 2004, 56(5): 415-428.
doi: 10.1111/j.1600-0870.2004.00076.x     URL    
[6] Chen Y, Oliver D S.Ensemble-based closed-loop optimization applied to brugge field[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(1):56-71.
doi: 10.2118/118926-MS     URL    
Chen Y, Oliver D S.Ensemble-based closed-loop optimization applied to brugge field[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(1):56-71.
doi: 10.2118/118926-MS     URL    
[7] Sakov P, Oke P R.A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters[J]. Tellus Series ADynamic Meteorology & Oceanography, 2008, 60(2): 361-371.
Sakov P, Oke P R.A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters[J]. Tellus Series ADynamic Meteorology & Oceanography, 2008, 60(2): 361-371.
[8] Whitaker J S, Hamill T M.Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7): 1 913-1 924.
doi: 10.1175/1520-0493(2002)1302.0.CO;2     URL    
Whitaker J S, Hamill T M.Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7): 1 913-1 924.
doi: 10.1175/1520-0493(2002)1302.0.CO;2     URL    
[9] Bishop C H, Etherton B J, Majumdar S J.Adaptive sampling with the ensemble transform Kalman Filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.
doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2     URL    
Bishop C H, Etherton B J, Majumdar S J.Adaptive sampling with the ensemble transform Kalman Filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.
doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2     URL    
[10] Houtekamer P L, Mitchell H L.A sequential ensemble Kalman filter for atmospheric data assimilation[J]. Monthly Weather Review, 2001, 129(1): 123-137.
doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2     URL    
Houtekamer P L, Mitchell H L.A sequential ensemble Kalman filter for atmospheric data assimilation[J]. Monthly Weather Review, 2001, 129(1): 123-137.
doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2     URL    
[11] Anderson J L.Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter[J]. Physica D Nonlinear Phenomena, 2007, 230(1): 99-111.
doi: 10.1016/j.physd.2006.02.011     URL    
Anderson J L.Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter[J]. Physica D Nonlinear Phenomena, 2007, 230(1): 99-111.
doi: 10.1016/j.physd.2006.02.011     URL    
[12] Miyoshi T, Yamane S, Enomoto T.Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF)[J]. SOLA, 2007, 3: 89-92.
doi: 10.2151/sola.2007-023     URL    
Miyoshi T, Yamane S, Enomoto T.Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF)[J]. SOLA, 2007, 3: 89-92.
doi: 10.2151/sola.2007-023     URL    
[13] Han Xujun, Li Xin.Review of the nonlinear filters in the land data assimilation[J]. Advances in Earth Science, 2008, 23(8): 813-820.
doi: 10.3321/j.issn:1001-8166.2008.08.004     URL    
Han Xujun, Li Xin.Review of the nonlinear filters in the land data assimilation[J]. Advances in Earth Science, 2008, 23(8): 813-820.
[韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展,2008,23(8):813-820.]
doi: 10.3321/j.issn:1001-8166.2008.08.004     URL    
[韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展,2008,23(8):813-820.]
doi: 10.3321/j.issn:1001-8166.2008.08.004     URL    
[14] Zhou Jian, Wang Genxu, Li Xin, et al. Data assimilation algorithm apply to energy-water balance analysis of the high cold ecosystem at Qinghai-Tibet Plain, Northwest China[J]. Advances in Earth Science, 2008, 23(9): 965-973.
URL    
Zhou Jian, Wang Genxu, Li Xin, et al. Data assimilation algorithm apply to energy-water balance analysis of the high cold ecosystem at Qinghai-Tibet Plain, Northwest China[J]. Advances in Earth Science, 2008, 23(9): 965-973.
[周剑,王根绪,李新,等. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展,2008, 23(9):965-973. ]
URL    
[周剑,王根绪,李新,等. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展,2008, 23(9):965-973. ]
URL    
[15] Sakov P, Evensen G, Bertino L.Asynchronous data assimilation with the EnKF[J]. Tellus Series ADynamic Meteorology & Oceanography, 2010, 62(1): 24-29.
doi: 10.1111/j.1600-0870.2009.00417.x     URL    
Sakov P, Evensen G, Bertino L.Asynchronous data assimilation with the EnKF[J]. Tellus Series ADynamic Meteorology & Oceanography, 2010, 62(1): 24-29.
doi: 10.1111/j.1600-0870.2009.00417.x     URL    
[16] Luo X, Hoteit I.Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter[J]. Monthly Weather Review, 2011, 139(12): 3 938-3 953.
doi: 10.1175/MWR-D-10-05068.1     URL    
Luo X, Hoteit I.Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter[J]. Monthly Weather Review, 2011, 139(12): 3 938-3 953.
doi: 10.1175/MWR-D-10-05068.1     URL    
[17] Sakov P, Bertino L.Relation between two common localisation methods for the EnKF[J]. Computational Geosciences, 2011, 15(2):225-237.
doi: 10.1007/s10596-010-9202-6     URL    
Sakov P, Bertino L.Relation between two common localisation methods for the EnKF[J]. Computational Geosciences, 2011, 15(2):225-237.
doi: 10.1007/s10596-010-9202-6     URL    
[18] Roh S, Genton M G, Jun M, et al. Observation quality control with a robust ensemble Kalman filter[J]. Monthly Weather Review, 2013, 141(12): 4 414-4 428.
doi: 10.1175/MWR-D-13-00091.1     URL    
Roh S, Genton M G, Jun M, et al. Observation quality control with a robust ensemble Kalman filter[J]. Monthly Weather Review, 2013, 141(12): 4 414-4 428.
doi: 10.1175/MWR-D-13-00091.1     URL    
[19] Bai Yulong, Gao Haisha, Chai Qianlong, et al. Comparative studies of sequential data assimilation methods based on Lorenz-96 Modes[J]. Remote Sensing Technology and Application, 2013, 28(2): 276-282.
URL    
Bai Yulong, Gao Haisha, Chai Qianlong, et al. Comparative studies of sequential data assimilation methods based on Lorenz-96 Modes[J]. Remote Sensing Technology and Application, 2013, 28(2): 276-282.
[摆玉龙,高海沙,柴乾隆,等. 基于Lorenz-96模型的顺序数据同化方法比较研究[J]. 遥感技术与应用, 2013,28(2):276-282.]
URL    
[摆玉龙,高海沙,柴乾隆,等. 基于Lorenz-96模型的顺序数据同化方法比较研究[J]. 遥感技术与应用, 2013,28(2):276-282.]
URL    
[20] Kirchgessner P, Nerger L, Bunsegerstner A.On the choice of an optimal localization radius in ensemble kalman filter methods[J]. Monthly Weather Review, 2014, 142(6): 2 165-2 175.
doi: 10.1175/MWR-D-13-00246.1     URL    
Kirchgessner P, Nerger L, Bunsegerstner A.On the choice of an optimal localization radius in ensemble kalman filter methods[J]. Monthly Weather Review, 2014, 142(6): 2 165-2 175.
doi: 10.1175/MWR-D-13-00246.1     URL    
[21] Mao Fuping, Zhang Shuwen, Ye Dan, et al. Impact of time correlated model errors on soil moisture estimates with the ensemble square root filter[J]. Advances in Earth Science, 2015, 30(6): 700-708.
doi: 10.11867/j.issn.1001-8166.2015.06.0700     URL    
Mao Fuping, Zhang Shuwen, Ye Dan, et al. Impact of time correlated model errors on soil moisture estimates with the ensemble square root filter[J]. Advances in Earth Science, 2015, 30(6): 700-708.
[毛伏平,张述文,叶丹,等. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展,2015,30(6):700-708.]
doi: 10.11867/j.issn.1001-8166.2015.06.0700     URL    
[毛伏平,张述文,叶丹,等. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展,2015,30(6):700-708.]
doi: 10.11867/j.issn.1001-8166.2015.06.0700     URL    
[22] Lu Yongnan, Bai Yulong, Xu Baoxiong, et al. Observation error handling methods of data assimilation coupled with fuzzy control algorithms[J]. Remote Sensing Technology and Application, 2017, 32(3): 459-465.
doi: 10.11873/j.issn.1004-0323.2017.3.0459     URL    
Lu Yongnan, Bai Yulong, Xu Baoxiong, et al. Observation error handling methods of data assimilation coupled with fuzzy control algorithms[J]. Remote Sensing Technology and Application, 2017, 32(3): 459-465.
[卢勇男,摆玉龙,徐宝兄,等. 耦合模糊控制算法的数据同化观测误差处理方法[J]. 遥感技术与应用,2017, 32(3):459-465.]
doi: 10.11873/j.issn.1004-0323.2017.3.0459     URL    
[卢勇男,摆玉龙,徐宝兄,等. 耦合模糊控制算法的数据同化观测误差处理方法[J]. 遥感技术与应用,2017, 32(3):459-465.]
doi: 10.11873/j.issn.1004-0323.2017.3.0459     URL    
[23] Wu Guocan, Zheng Xiaogu.Analysis programme in assimilation of ensemble transform Kalman Filter[J]. China Sciencepaper, 2015, 10(3): 256-260.
Wu Guocan, Zheng Xiaogu.Analysis programme in assimilation of ensemble transform Kalman Filter[J]. China Sciencepaper, 2015, 10(3): 256-260.
[吴国灿,郑小谷. 集合转换卡尔曼滤波同化的一种分析方案[J]. 中国科技论文,2015,10(3):256-260.]
[吴国灿,郑小谷. 集合转换卡尔曼滤波同化的一种分析方案[J]. 中国科技论文,2015,10(3):256-260.]
[24] Han Pei, Shu Hong, Xu Jianhui.A comparative study of background error covariance localization in EnKF data assimilation[J]. Advances in Earth Science, 2014, 29(10): 1 175-1 185.
Han Pei, Shu Hong, Xu Jianhui.A comparative study of background error covariance localization in EnKF data assimilation[J]. Advances in Earth Science, 2014, 29(10): 1 175-1 185.
[韩培,舒红,许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展,2014, 29(10):1 175-1 185.]
[韩培,舒红,许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展,2014, 29(10):1 175-1 185.]
[25] Ying H, Ding Y, Li S, et al. Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators[J]. IEEE Transactions on Systems Man & Cybernetics Part A: Systems & Humans, 1999, 29(5): 508-514.
Ying H, Ding Y, Li S, et al. Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators[J]. IEEE Transactions on Systems Man & Cybernetics Part A: Systems & Humans, 1999, 29(5): 508-514.
[26] Gaspari G, Cohn S E.Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723-757.
doi: 10.1002/(ISSN)1477-870X     URL    
Gaspari G, Cohn S E.Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723-757.
doi: 10.1002/(ISSN)1477-870X     URL    
[27] Huang Zhihui, Bai Yulong, Shao Yu, et al. Data assimilation strategy research with small ensemble circumstance[J]. Computer Engineering and Applications, 2015, 51(7): 209-214.
doi: 10.3778/j.issn.1002-8331.1405-0421     URL    
Huang Zhihui, Bai Yulong, Shao Yu, et al. Data assimilation strategy research with small ensemble circumstance[J]. Computer Engineering and Applications, 2015, 51(7): 209-214.
[黄智慧,摆玉龙,邵宇,等. 小集合数条件下的数据同化策略研究[J].计算机工程与应用,2015,51(7):209-214.]
doi: 10.3778/j.issn.1002-8331.1405-0421     URL    
[黄智慧,摆玉龙,邵宇,等. 小集合数条件下的数据同化策略研究[J].计算机工程与应用,2015,51(7):209-214.]
doi: 10.3778/j.issn.1002-8331.1405-0421     URL    
[28] Yang S C, Kalnay E, Hunt B, et al. Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(638): 251-262.
doi: 10.1002/qj.v135:638     URL    
Yang S C, Kalnay E, Hunt B, et al. Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(638): 251-262.
doi: 10.1002/qj.v135:638     URL    
[29] Hunt B R, Kostelich E J, Szunyogh I.Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman Filter[J]. Physica D: Nonlinear Phenomena, 2007, 230(1): 112-126.
doi: 10.1016/j.physd.2006.11.008     URL    
Hunt B R, Kostelich E J, Szunyogh I.Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman Filter[J]. Physica D: Nonlinear Phenomena, 2007, 230(1): 112-126.
doi: 10.1016/j.physd.2006.11.008     URL    
[30] Lorenz E N, Emanuel K A.Optimal sites for supplementary weather observations: Simulation with a small model[J]. Journal of the Atmospheric Sciences, 1998, 55(3): 399-414.
doi: 10.1175/1520-0469(1998)0552.0.CO;2     URL    
Lorenz E N, Emanuel K A.Optimal sites for supplementary weather observations: Simulation with a small model[J]. Journal of the Atmospheric Sciences, 1998, 55(3): 399-414.
doi: 10.1175/1520-0469(1998)0552.0.CO;2     URL    
[1] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
阅读次数
全文


摘要