地球科学进展 ›› 2007, Vol. 22 ›› Issue (1): 49 -57. doi: 10.11867/j.issn.1001-8166.2007.01.0049

综述与评述 上一篇    下一篇

海底沉积物孔隙水钡循环对天然气渗漏的指示
冯 东 1,2,3,陈多福 1,2   
  1. 1.中国科学院广州地球化学研究所边缘海地质重点实验室,广东 广州 510640;2.中国科学院广州天然气水合物研究中心,广东 广州 510640;3.中国科学院研究生院,北京 100049
  • 收稿日期:2006-07-18 修回日期:2006-11-21 出版日期:2007-01-10
  • 通讯作者: 冯东(1980-),男,陕西米脂人,博士研究生,主要从事天然气水合物研究.E-mail: fd@gig.ac.cn E-mail:fd@gig.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“海底天然气渗漏系统水合物成藏机制及识别方法”(编号:KZCX3-SW-224);国家自然科学基金项目“海底天然气渗漏系统冷泉碳酸盐岩的细菌沉淀动力学”(编号:40472059);中国科学院知识创新工程前沿领域项目“俯冲洋壳熔融及相关弧火山岩地球化学及成因研究”(编号:GIGCX-04-03)资助.

Barium Cycling in Pore Water of Seafloor Sediment: Indicator of Methane Fluxes

FENG Dong 1,2,3,CHEN Duo-fu 1,2   

  1. 1. Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China; 3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2006-07-18 Revised:2006-11-21 Online:2007-01-10 Published:2007-01-10

冷泉流体的渗漏活动强烈地影响着海底沉积物孔隙水钡循环。冷泉流体中的Ba2+ 向上扩散与孔隙水硫酸盐反应,在硫酸盐—碳氢化合物转化带(SHT)之上沉淀重晶石。随着沉积物的埋藏,先前沉淀的重晶石被埋藏于SHT之下的硫酸盐亏损带,将发生溶解,溶解的钡向上扩散,在SHT之上再次沉淀重晶石。当体系中向上扩散的Ba2+超过埋藏的重晶石中的钡时,在剖面上形成“钡锋”。向上渗漏的碳氢化合物(甲烷为主)通量控制了SHT的深度,二者之间存在很好的地球化学耦合关系,从而,可以用“钡锋”来评价天然气渗漏活动的特征。在总结和分析国际海底冷泉渗漏活动区沉积物孔隙水的甲烷和钡循环的研究进展基础上,综述了海底沉积物孔隙水钡循环对现在和过去天然气渗漏的指示,总结了渗漏成因重晶石的地质和地球化学特征。

Methane and other hydrocarbons flux upward through deep-marine sediment may strongly impact the cycling of barium near the seafloor. Dissolved barium crossing sulfate-hydrocarbon transition (SHT) reacts with SO2-4, precipitating barium fronts composed of barite immediately above the SHT. During sediment burial, barite moves downward from SO2-4-rich to SO2-4-depleted pore water where it dissolves. In turn, Ba2+ dissolved diffuses upward from SO2-4-depleted to SO2-4-rich pore water where it precipitates as barite. In systems where upward Ba2+ diffusion exceeds downward barite burial, this barium cycling can result in a “barium front”, a short interval of anomalously high labile barium concentrations immediately above the depth of SO2-4-depletion. Because the depth of SHT is controlled by the fluxing of methane and other hydrocarbons, the fluxes of methane should be coupled with barium cycling. Thus “barium front” may become an indicator of present and past methane fluxing and can be used to reconstruct changes in the upward flux of methane. The methane and barium cycles in sediment pore water near the seafloor has been comprehensively reviewed. Moreover, the indicator of barium cycling to present and past gas seeping in sediment pore waters at seafloor has been discussed. Finally, the geological and geochemical characteristics of seep related barite have been summarized.

中图分类号: 

[1]Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters,2003, 213: 169-183.
[2]Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics [J]. Terrestrial, Atmospheric and Oceanic Sciences,2006,17:723-737.
[3]Chen Zhong,Yan Wen,Chen Muhong, et al. Advances in gas hydrate dissociation and fate of methane in marine sediment [J]. Advances in Earth Science, 2006, 21(4):394-400. [陈忠,颜文,陈木宏,等. 海底天然气水合物分解与甲烷归宿研究进展[J].地球科学进展,2006,21(4):394-400.]
[4]Yu Xiaoguo, Li Jiabiao. Advance in gas hydrate dissociation and effects on the ecology and environment[J]. Advances in Earth Science, 2004,19(6): 947-954. [于晓果,李家彪.天然气水合物分解及其生态环境效应研究进展[J].地球科学进展,2004,19(6): 947-954.]
[5]Castellini D G, Dickens G R , Snyder G T, et al. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico [J]. Chemical Geology, 2006, 226: 1-30.
[6]Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts [J]. Chemical Geology, 1996, 127: 125-139.
[7]Torres M E, McManus J, Huh C A. Fluid seepage along the San Clemente Fault scarp: Basin-wide impact on barium cycling [J]. Earth and Planetary Science Letters, 2002, 203: 181-194. 
[8]Dickens G R, Fewless T, Thomas E, et al. Excess barite accumulation during the Paleocene Eocene thermal maximum: massive input of dissolved barium from seafloor gas hydrate reservoirs[C]//Wing S L, Gingerich P D, Schmitz B, eds. Causes and Consequences of Globally Warm Climates in the Early Paleogene. Special Paper, Geological Society of America, 2003,369: 11-23.
[9]Feng Dong, Chen Duofu, Su Zheng, et al. Advances on the anaerobic methane oxidation and seep carbonates precipitation kinetics at seafloor [J]. Marine Geology and Quaternary Geology, 2006, 26(3):125-131. [冯东,陈多福,苏正,等. 海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展[J].海洋地质与第四纪地质,2006,26(3):125-131.]
[10]Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta,2001, 65: 529-543. 
[11]Riedinger N, Kasten S, Gröger J, et al. Active and bruied authigenic barite fronts in sediments from the Eastern Cape basin[J]. Earth and Planetary Science Letters,2006, 241: 876-887.
[12]Aloisi G, Wallmann K, Bollwerk S M, et al. The effect of dissolved barium on biogeochemical processes at cold seeps [J]. Geochimica et Cosmochimica Acta, 2004, 68, 1735-1748.
[13]Torres M E, Bohrmann G, Dubé, T E,et al. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins [J]. Geology,2003, 31, 897-900.
[14]Davie M K, Buffett B A. A numerical model for the formation of gas hydrate below the seafloor [J]. Journal of Geophysical Research, 2001, 106: 497-514. 
[15]Cathles L M, Chen D F. A compositional kinetic model of hydrate crystallization and dissolution [J]. Journal of Geophysics Research,2004, 109, B08102, doi:10.1029/2003JB002910.
[16]Chen Duofu, Feng Dong, Cathles L M. Kinetics of gas hydrate reservoir formation and gas potential assessment in the marine gas vent system[J]. Geotectonica et Metallogenia,2005, 29(2): 278-284. [陈多福,冯东, Cathles L M.海底天然气渗漏系统水合物成藏动力学及其资源评价方法[J].大地构造与成矿学,2005,29(2): 278-284.] 
[17]Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at hydrate ridge, Cascadia margin numerical modeling and mass balances [J]. Geochimica et Cosmochimica Acta,2003,67:3 403-3 421.
[18]Suess E, Torres M E, Bohrmann G, et al. Gas hydrate destabilization: Enhanced dewatering, benthic material turnover, and large methane plumes at the Cascadia Margin [J]. Earth and Planetary Science Letters,1999, 170: 1-15.
[19]Dymond J, Suess E, Lyle M. Barium in deep-sea sediments: A geochemcial proxy for paleoproductivity [J]. Paleoceanography,1992, 7: 163-181.
[20]Gingele F, Dahmke A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments [J]. Paleoceanography,1994, 9: 151-168.
[21]Von Breymann M T, Emeis K  C, Camerlenghi A. Geochemistry of sediments from the Peru upwelling area: Results from Sites 680, 682, 685 and 688[C]//Suess E, eds. Proceedings of the Ocean Drilling Program, Scientific Results. Texas A & M University, College Station, Texas, USA, 1990, 112: 491-503. 
[22]Von Breymann M T, Brumsack H, Emeis K -C. Deposition and diagenetic behavior of barium in the Japan sea[C]//Sciotto K A,  eds. Proceedings of the Ocean Drilling Program, Scientific Results. Texas A & M University, College Station, Texas, USA, 1992,127/128: 651-665. 
[23]Monnin C. A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200℃ and to 1 kbar [J]. Chemical Geology,1999, 153: 187-209.
[24]McManus J, Berelson W M, Klinkhammer G P, et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy[J]. Geochimica et Cosmochimica Acta,1998, 62:3 453-3 473.
[25]Fu B, Aharon P. Sources of hydrocarbon-rich fluids advecting on the seafloor in the northern Gulf of Mexico[C]//Transactions Gulf Coast Association of Geological Societies.1998, 48: 73-81.
[26]Naehr T H, Stakes D S, Moore W S. Mass wasting, ephemeral fluid flow and barite deposition on the California continental margin [J]. Geology,2000, 28: 315-318.
[27]Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006, 232: 362-407. 
[28]Borowski W S, Paull C K, Ussler W III. Marine pore water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology,1996, 24: 655-658.
[29]Borowski W S, Paull C K, Ussler W III. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J]. Marine Geology,1999, 159: 131-154.
[30]Suess E, Bohrmann G, Von Huene R, et al. Fluid venting in the eastern Aleutian subduction zone [J]. Journal of Geophysics Research,1998,103:2 597-2 614.
[31]Torres M E, Bohrmann G, Suess E. Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone [J]. Earth and Planetary Science Letters,1996, 144: 469-481.
[32]Fu B, Aharon P, Byerly G R, et al. Barite chimneys of the Gulf of Mexico slope: Initial report on their petrography and geochemistry [J]. Geo-Marine Letters,1994, 14: 81-87.
[33]Greinert J, Boolwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotak: Precipitation processes at cold seep sites [J]. Earth and Planetary Science Letters,2002, 203: 165-180.
[34]Berner R A. Diageenetic models of dissolved species in the interstitial waters of compacting sediments [J]. American Journal of Sciences,1975, 275: 88-96.
[35]Li Y, Gregory S. Diffusion of ions in sea water and in deep-sea sediments [J]. Geochimica et Cosmochimica Acta,1974, 38: 703-714.
[36]Iversen N, J rgensen B B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity [J]. Geochimica et Cosmochimica Acta,1993, 57: 571-578.
[37]Niew hner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62: 455-464.
[38]Hoffman P F, Schrag D P. The snowball Earth hypothesis: Testing the limits of global change [J]. Terra Nova,2002, 14: 129-155.
[39]Jiang G, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates [J]. Nature,2003, 426: 822-826.
[40]Wang Jiasheng,Gan Huayang,Wei Qing, et al. Stable isotopes of carbon and sulfur of cap dolomite in the Three Gores and its mechanism discussion[J]. Geoscience,2005,19(1):14-20. [王家生,甘华阳,魏清,等.三峡“盖帽”白云岩的碳、硫稳定同位素研究及其成因探讨[J].现代地质,2005,19(1): 14-20.]
[41]Ramkumar M, Harting M, Stüben D. Barium anomaly preceding K/T boundary: possible causes and implications on end Cretaceous events of K/T sections in Cauvery basin (India), Israel, NE-Mexico and Guatemala [J]. International Journal of Earth Sciences,2005, 94: 475-489.
[42]Lü Zhicheng, Liu Congqiang, Liu Jiajun, et al. The bio-barite in witherite deposits from Southern Qinling and its significance [J]. Progress in Natural Science,2004, 14(8): 892-897.[吕志成,刘丛强,刘家军,等.南秦岭毒重石成矿带矿床中的生物成因重晶石及其意义[J].自然科学进展,2004,14(8): 892-897.] 
[43]Koski R A, Lonsdale P F, Shanks W C, et al. Mineralogy and geochemistry of a sediment hosted hydrothermal sulfide deposit from the southern trough of the Guaymas basin, Gulf of California [J]. Journal of Geophysical Research,1985,90:6 695-6 707.
[44]Paytan A, Kastner M, Martin E E, et al. Marine barite as a monitor of seawater strontium isotope composition[J]. Nature, 1993, 366: 445-449. 
[45]Paytan A, Mearon S, Cobb K, et al. Origin of marine barite deposits: Sr and S isotope characterization [J]. Geology, 2002, 30: 747-750. 
[46]Aquilina L, Bourgois J, Fouillac A M, et al. Massive barite deposits in the convergent margin off Peru: Implications for fluid circulation within subduction zones [J]. Geochimica et Cosmochimica Acta, 1997, 61: 1 233-1 245.
[47]Shikazono N. Precipitation mechanisms of barite in sulfate-sulfide deposits in back-arc basins [J]. Geochimica et Cosmochimoca Acta, 1994,58:2 203-2 213.
[48]Wang Z, Li G. Barite and witherite deposits in Lower Cambrian shales of South China:Stratigraphic distribution and geochemical characterization[J]. Economic Geology,1991, 86: 354-363. 
[49]Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoicseawater sulfate [J].Science,1998,282:1 459-1 462.

[1] 朱如凯,邹才能,白斌,苏玲,高志勇,罗忠. 全球油气勘探研究进展及对沉积储层研究的需求[J]. 地球科学进展, 2011, 26(11): 1150-1161.
[2] 陈礼仪,王 胜,张永勤. 高原冻土天然气水合物钻探低温泥浆基础液研究[J]. 地球科学进展, 2008, 23(5): 469-473.
[3] 张建勇,刘文汇,腾格尔,王晓锋,卿颖,马凤良. 硫化氢形成与C 2+气态烷烃形成的同步性研究——几个模拟实验的启示[J]. 地球科学进展, 2008, 23(4): 390-400.
[4] 阎存凤,袁剑英,陈启林. 柴达木盆地北缘东段中下侏罗统孢粉相及生烃潜力[J]. 地球科学进展, 2007, 22(12): 1268-1273.
[5] 周蒂,孙珍,陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572.
[6] 吉利明,李林涛,吴涛,张晓宝,周世新. 柴达木盆地始新统沟鞭藻及其油源意义[J]. 地球科学进展, 2007, 22(3): 221-226.
[7] 陈启林;周洪瑞;李相博;. 蒙甘青地区早白垩世原型盆地特征及其对烃源岩分布的控制[J]. 地球科学进展, 2005, 20(6): 656-663.
[8] 陈中红;查明. 烃源岩排烃作用研究现状及展望[J]. 地球科学进展, 2005, 20(4): 459-466.
[9] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[10] 戴金星. 油气地质学的若干问题[J]. 地球科学进展, 2001, 16(5): 710-718.
[11] 王新民,郭彦如,马龙,张虎权. 银—额盆地侏罗、白垩系油气超系统特征及其勘探方向[J]. 地球科学进展, 2001, 16(4): 490-495.
[12] 史斗,郑军卫. 天然气:21世纪我国国民经济新的增长点[J]. 地球科学进展, 2001, 16(4): 533-539.
[13] 金春爽,汪集旸. 天然气水合物的地热研究进展[J]. 地球科学进展, 2001, 16(4): 540-543.
[14] 王新民,赵应成. 吐哈盆地台北凹陷侏罗系油气富集地质条件及油气分布规律[J]. 地球科学进展, 1998, 13(4): 344-350.
[15] 王兆云,程克明. 固体 13C核磁共振技术在石油地球化学研究中的应用[J]. 地球科学进展, 1998, 13(3): 246-250.
阅读次数
全文


摘要