地球科学进展 ›› 2021, Vol. 36 ›› Issue (7): 684 -693. doi: 10.11867/j.issn.1001-8166.2021.073

综述与评述 上一篇    下一篇

水—粮食—能源—生态系统关联研究进展
王奕佳 1( ),刘焱序 1( ),宋爽 1,傅伯杰 1, 2   
  1. 1.北京师范大学地理科学学部,地表过程与资源生态国家重点实验室,北京 100875
    2.中国科学院生态环境研究中心,城市与区域生态国家重点实验室,北京 100085
  • 收稿日期:2021-02-26 修回日期:2021-06-11 出版日期:2021-07-10
  • 通讯作者: 刘焱序 E-mail:yijiawang27@mail.bnu.edu.cn;yanxuliu@bnu.edu.cn
  • 基金资助:
    国家自然科学基金项目“黄河流域人地系统耦合机理与优化调控”(42041007);第二次青藏高原综合科学考察研究项目“生态安全屏障功能与优化体系”(2019QZKK0405)

Research Progress of the Water-Food-Energy-Ecosystem Nexus

Yijia WANG 1( ),Yanxu LIU 1( ),Shuang SONG 1,Bojie FU 1, 2   

  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
    2.State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China
  • Received:2021-02-26 Revised:2021-06-11 Online:2021-07-10 Published:2021-08-20
  • Contact: Yanxu LIU E-mail:yijiawang27@mail.bnu.edu.cn;yanxuliu@bnu.edu.cn
  • About author:WANG Yijia (1997-), female, Shantou City, Guangdong Province, Ph.D student. Research areas include vegetation and climate interactions and social-ecological systems. E-mail: yijiawang27@mail.bnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Mechanisms of human-natural system coupling and optimization of the Yellow River Basin"(42041007);The Second Tibetan Plateau Scientific Expedition and Research Program "Ecological security barrier function and optimization system"(2019QZKK0405)

传统的水—粮食—能源关联对生态系统的支持与反馈能力考虑不足,增加了协同保障区域水—粮食—能源安全的难度。综述了近年来国际上水—粮食—能源—生态系统关联框架的搭建,发现有必要从生态系统服务的角度统筹水、粮食、能源等资源部门的社会治理过程。基于生态系统类型,可分为农业、河流、森林、草地和城市生态系统的5种常见关联结构,但目前针对森林和草原生态系统的研究相对不足。量化评估中子系统边界的确定,关联预测中多主体对关联的影响,整合优化中结合资源管理和生态修复是难点所在。未来可以从把握区域特征、扩充指标体系、整合模型需求和优化国土空间4个方向入手优化水—粮食—能源—生态系统关联结构,为区域可持续发展提供整体决策依据。

Traditional Water-Food-Energy (WFE) nexus lacks consideration of the support and feedback capacity of ecosystems, which makes it difficult to guarantee a coordinated regional water-food-energy security. Based on a review of recent international frameworks for Water-Food-Energy-Ecosystem (WFEE) nexus construction, we found that there was a need to integrate the social governance processes of water, food and energy resource sectors from the perspective of ecosystem services. On the basis of different ecosystem types, the common WFEE nexus can be classified into five ecosystems: agriculture, river, forest, grassland, and urban. There is a relative lack of research on forest and grassland ecosystems. In terms of research methods, the research difficulties are the determination of subsystem boundaries in quantitative assessment, the influence of multiple subjects on the nexus in prediction, and the combination of resource management and ecological restoration in integration and optimization. With the goal of optimizing the WFEE nexus structure and providing an overall decision basis for regional sustainable development, future research can focus on four aspects: grasping the regional characteristics, expanding the index system, integrating the model requirements, and optimizing the national space.

中图分类号: 

图1 从水—粮食—能源关联(a)到水—粮食—能源—生态系统关联(b
Fig. 1 From Water-Food-Energy nexus a to Water-Food-Energy-Ecosystem nexus b
图2 不同生态系统类型的WFEE关联框架
Fig. 2 WFEE nexus framework for different ecosystem types
图3 依据27WFEE案例整理的研究方法比较
Fig. 3 Comparison of research methods based on 27 WFEE cases
图4 增强WFEE关联协同作用的研究展望
Fig. 4 Research perspectives for enhancing WFEE nexus synergy
1 RASUL G, SHARMA B. The nexus approach to water-energy-food security: an option for adaptation to climate change[J]. Climate Policy, 2016, 16(6): 682-702.
2 TIAN H, LU C, PAN S, et al. Optimizing resource use efficiencies in the food-energy-water nexus for sustainable agriculture: from conceptual model to decision support system[J]. Current Opinion in Environmental Sustainability, 2018, 33: 104-113.
3 PRITCHARD H D. Asia's shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7 758): 649-654.
4 LIU J, HULL V, GODFRAY H C J, et al. Nexus approaches to global sustainable development[J]. Nature Sustainability, 2018, 1(9): 466-476.
5 FU B. Promoting geography for sustainability[J]. Geography and Sustainability, 2020, 1(1): 1-7.
6 PENG J, HU Y, DONG J, et al. Linking spatial differentiation with sustainability management: academic contributions and research directions of physical geography in China[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(1): 14-30.
7 MIRZAEI A, SAGHAFIAN B, MIRCHI A, et al. The groundwater-energy-food nexus in Iran's agricultural sector: implications for water security[J]. Water, Multidisciplinary Digital Publishing Institute, 2019, 11(9): 1 835.
8 HANES R J, GOPALAKRISHNAN V, BAKSHI B R. Including nature in the food-energy-water nexus can improve sustainability across multiple ecosystem services[J]. Resources, Conservation and Recycling, 2018, 137: 214-228.
9 KURIAN M. The water-energy-food nexus: trade-offs, thresholds and transdisciplinary approaches to sustainable development[J]. Environmental Science & Policy, 2017, 68: 97-106.
10 RINGLER C, BHADURI A, LAWFORD R. The nexus across Water, Energy, Land and Food (WELF): potential for improved resource use efficiency?[J]. Current Opinion in Environmental Sustainability, 2013, 5(6): 617-624.
11 ISHIMASTU T, DOUFENE A, ALAWAD A, et al. Desalination network model driven decision support system: a case study of Saudi Arabia[J]. Desalination, 2017, 423: 65-78.
12 HOWELLS M, HERMANN S, WELSCH M, et al. Integrated analysis of climate change, land-use, energy and water strategies[J]. Nature Climate Change, 2013, 3(7): 621-626.
13 SCHL?R H, VENGHAUS S, J-F HAKE. The FEW-Nexus City index—measuring urban resilience[J]. Applied Energy, 2018, 210: 382-392.
14 BAZILIAN M, ROGNER H, HOWELLS M, et al. Considering the energy, water and food nexus: towards an integrated modelling approach[J]. Energy Policy, 2011, 39(12): 7 896-7 906.
15 BLEISCHWITZ R, SPATARU C, VANDEVEER S D, et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals[J]. Nature Sustainability, Nature Publishing Group, 2018, 1(12): 737-743.
16 ZHANG C, CHEN X, LI Y, et al. Water-energy-food nexus: concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195: 625-639.
17 ENDO A, TSURITA I, BURNETT K, et al. A review of the current state of research on the water, energy, and food nexus[J]. Journal of Hydrology: Regional Studies, 2017, 11: 20-30.
18 ZHANG P, ZHANG L, CHANG Y, et al. Food-Energy-Water (FEW) nexus for urban sustainability: a comprehensive review[J]. Resources, Conservation and Recycling, 2019, 142: 215-224.
19 D'ODORICO P, DAVIS K F, ROAS L, et al. The global food-energy-water nexus[J]. Reviews of Geophysics, 2018, 56(3): 456-531.
20 ZHANG Zongyong, LIU Junguo, WANG Kai, et al. A review and discussion on the water-food-energy nexus: bibliometric analysis[J]. Chinese Science Bulletin, 2020, 65(16): 1 569- 1 580.
张宗勇, 刘俊国, 王凯, 等. 水—粮食—能源关联系统述评:文献计量及解析[J]. 科学通报, 2020, 65(16): 1 569-1 580.
21 MELO F P L, PARRY L, BRANCALION P H S, et al. Adding forests to the water-energy-food nexus[J]. Nature Sustainability, 2020, 4(2): 85-92.
22 BELL A, MATTHEWS N, ZHANG W. Opportunities for improved promotion of ecosystem services in agriculture under the water-energy-food nexus[J]. Journal of Environmental Studies and Sciences, 2016, 6(1): 183-191.
23 VANHAM D. Does the water footprint concept provide relevant information to address the water-food-energy-ecosystem nexus?[J]. Ecosystem Services, 2016, 17: 298-307.
24 LU Y, JENKINS A, FERRIER R C, et al. Addressing China's grand challenge of achieving food security while ensuring environmental sustainability[J]. Science Advances, American Association for the Advancement of Science, 2015, 1(1): e1400039.
25 FASEL M, BRéTHAUT C, ROUHOLAHNEJAD E, et al. Blue water scarcity in the Black Sea catchment: identifying key actors in the water-ecosystem-energy-food nexus[J]. Environmental Science & Policy, 2016, 66: 140-150.
26 YANG J, YANG Y C E, CHANG J, et al. Impact of dam development and climate change on hydroecological conditions and natural hazard risk in the Mekong River Basin[J]. Journal of Hydrology, 2019, 579: 124177.
27 GARCIA D J. Considering agricultural wastes and ecosystem services in food-energy-water-waste nexus system design[J]. Journal of Cleaner Production, 2019, 228: 941-955.
28 CAI Yunlong. Socio-economic perspectives on ecological problems[J]. Advances in Earth Science, 2020, 35(7): 742-749.
蔡运龙. 生态问题的社会经济检视[J].地球科学进展, 2020, 35(7): 742-749.
29 KATTELUS M, RAHAMAN M M, VARIS O. Myanmar under reform: emerging pressures on water, energy and food security[J]. Natural Resources Forum, 2014, 38(2): 85-98.
30 Al-SAIDI M, ELAGIB N A. Towards understanding the integrative approach of the water, energy and food nexus[J]. Science of the Total Environment, 2017, 574: 1 131-1 139.
31 HüLSMANN S, SU?NIK J, RINKE K, et al. Integrated modelling and management of water resources: the ecosystem perspective on the nexus approach[J]. Current Opinion in Environmental Sustainability, 2019, 40: 14-20.
32 REYERS B, SELIG E R. Global targets that reveal the social-ecological interdependencies of sustainable development[J]. Nature Ecology & Evolution, 2020, 4(8): 1 011-1 019.
33 SMAJGL A, WARD J, PLUSCHKEl L. The water-food-energy nexus-realising a new paradigm[J]. Journal of Hydrology, 2016, 533: 533-540.
34 DE GRENADE R, HOUSE-PETERS L, SCOTT C, et al. The nexus: reconsidering environmental security and adaptive capacity[J]. Current Opinion in Environmental Sustainability, 2016, 21: 15-21.
35 EVERARD M. Managing socio-ecological systems: who, what and how much? The case of the Banas river, Rajasthan, India[J]. Current Opinion in Environmental Sustainability, 2020, 44: 16-25.
36 Al-BAKRI J T, SALAHAT M, SULEIMAN A, et al. Impact of climate and land use changes on water and food security in Jordan: implications for transcending "the tragedy of the commons"[J]. Sustainability (Switzerland), 2013, 5(2): 724-748.
37 DACCACHE A, CIURANA J S, DIAZ J A R, et al. Water and energy footprint of irrigated agriculture in the Mediterranean region[J]. Environmental Research Letters, 2014, 9(12): 124014.
38 CHEN B, HAN M Y, PENG K, et al. Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains[J]. Science of the Total Environment, 2018, 613/614: 931-943.
39 YAZDANDOOST F, YAZDANI S A. A new integrated portfolio based water-energy-environment nexus in wetland catchments[J]. Water Resources Management, 2019, 33(9): 2 991-3 009.
40 GAIN A K, GIUPPONI C, WADA Y. Measuring global water security towards sustainable development goals[J]. Environmental Research Letters, 2016, 11(12): 124015.
41 ZENG R, CAI X, RINGLER C, et al. Hydropower versus irrigation—an analysis of global patterns[J]. Environmental Research Letters, 2017, 12(3): 034006.
42 S-M JALILOV, AMER S A, WARD F A. Water, food, and energy security: an elusive search for balance in Central Asia[J]. Water Resources Management, 2013, 27(11): 3 959-3 979.
43 ZIV G, BARAN E, NAM S, et al. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin[J]. Proceedings of the National Academy of Sciences, 2012, 109(15): 5 609-5 614.
44 KARABULUT A, EGOH B N, LANZANOVA D, et al. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin[J]. Ecosystem Services, 2016, 17: 278-292.
45 YANG Y C E, WI S, RAYA P A, et al. The future nexus of the Brahmaputra River Basin: climate, water, energy and food trajectories[J]. Global Environmental Change, 2016, 37: 16-30.
46 SPECHT M J, PINTO S R R, ALBUQUERQUEl U P, et al. Burning biodiversity: fuelwood harvesting causes forest degradation in human-dominated tropical landscapes[J]. Global Ecology and Conservation, 2015, 3: 200-209.
47 MULLIGAN M, SOESBERGEN A VAN, HOLE D G, et al. Mapping nature's contribution to SDG 6 and implications for other SDGs at policy relevant scales[J]. Remote Sensing of Environment, 2020, 239: 111671.
48 MWAMPAMBA T H, SCHAIK N L M B VAN, CASTILLO Hernandez L A. Incorporating ecohydrological processes into an analysis of charcoal-livestock production systems in the tropics: an alternative interpretation of the water-energy-food nexus[J]. Frontiers in Environmental Science, 2018, 6: 99.
49 QI J, XIN X, JOHN R, et al. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt[J]. Ecological Processes, 2017, 6(1): 22.
50 KOOKANA R S, DRECHSEL P, JAMWAL P, et al. Urbanisation and emerging economies: issues and potential solutions for water and food security[J]. Science of the Total Environment, 2020, 732: 139057.
51 ARTHUR M, LIU G, HAO Y, et al. Urban food-energy-water nexus indicators: a review[J]. Resources, Conservation and Recycling, 2019, 151: 104481.
52 HEARD B R, MILLER S A, LIANG S, et al. Emerging challenges and opportunities for the food-energy-water nexus in urban systems[J]. Current Opinion in Chemical Engineering, 2017, 17: 48-53.
53 CRISTIANO E, DEIDDA R, VIOLA F. The role of green roofs in urban water-energy-food-ecosystem nexus: a review[J]. Science of the Total Environment, 2021, 756: 143876.
54 BIGGS E M, BRUCE E, BORUFF B, et al. Sustainable development and the water-energy-food nexus: a perspective on livelihoods[J]. Environmental Science & Policy, 2015, 54: 389-397.
55 WEITZ N, STRAMBO C, KEMP-BENEDICT E, et al. Closing the governance gaps in the water-energy-food nexus: insights from integrative governance[J]. Global Environmental Change, 2017, 45: 165-173.
56 ZHANG P, ZHANG L, CHANG Y, et al. Food-Energy-Water (FEW) nexus for urban sustainability: a comprehensive review[J]. Resources, Conservation and Recycling, 2019, 142: 215-224.
57 LI Guijun, LI Yulong, JIA Xiaoqing, et al. Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing[J]. Management Review, 2016, 28(10): 11-26.
李桂君, 李玉龙, 贾晓菁, 等. 北京市水—能源—粮食可持续发展系统动力学模型构建与仿真[J]. 管理评论, 2016, 28(10): 11-26.
58 PENG Shaoming, ZHENG Xiaokang, WANG Yu, et al. Study on water-energy-food collaborative optimization for Yellow River Basin[J]. Advances in Water Science, 2017, 28(5): 681-690.
彭少明, 郑小康, 王煜, 等. 黄河流域水资源—能源—粮食的协同优化[J]. 水科学进展, 2017, 28(5): 681-690.
59 BAI Jingfeng, ZHANG Haijun. Spatio-temporal variation and driving force of Water-Energy-Food pressure in China[J]. Scientia Geographica Sinica, 2018, 38(10): 1 653-1 660.
白景锋, 张海军. 中国水—能源—粮食压力时空变动及驱动力分析[J]. 地理科学, 2018, 38(10): 1 653-1 660.
60 SUN Jie, XIE Xiaoshuang. Esitimation of Water-Energy-Food (WEF) servicing values based on a case study on Guizhou Province[J]. Recources & Industries, 2020, 22(5): 37-47.
孙杰, 解小爽. “水—能源—粮食”服务价值核算研究——以贵州省为例[J]. 资源与产业, 2020, 22(5): 37-47.
61 SAIDMAMATOV O, RUDENKO I, PFISTER S, et al. Water-energy-food nexus framework for promoting regional integration in Central Asia[J]. Water, 2020, 12(7): 1896.
62 ROJAS-DOWNING M M, NEJAHASHEMI A P, ELAHIl B, et al. Food footprint as a measure of sustainability for grazing dairy farms[J]. Environmental Management, 2018, 62(6): 1 073-1 088.
63 YUAN M H, LO S L. Ecosystem services and sustainable development: perspectives from the food-energy-water nexus[J]. Ecosystem Services, 2020, 46: 101217.
64 ZARFL C, LUMSDON A E, BERLEKAMP J, et al. A global boom in hydropower dam construction[J]. Aquatic Sciences, 2015, 77(1): 161-170.
65 YANG J, YANG Y C E, KHAN H F, et al. Quantifying the sustainability of water availability for the water-food-energy-ecosystem nexus in the Niger River Basin[J]. Earth's Future, 2018, 6(9): 1 292-1 310.
66 CHEN L, HUANG K, ZHOU J, et al. Multiple-risk assessment of water supply, hydropower and environment nexus in the water resources system[J]. Journal of Cleaner Production, 2020, 268: 122057.
67 HURFORD A P, HAROU J J. Balancing ecosystem services with energy and food security—assessing trade-offs from reservoir operation and irrigation investments in Kenya's Tana Basin[J]. Hydrology and Earth System Sciences, 2014, 18(8): 3 259-3 277.
68 NIU G, ZHENG Y, HAN F, et al. The nexus of water, ecosystems and agriculture in arid areas: a multiobjective optimization study on system efficiencies[J]. Agricultural Water Management, 2019, 223: 105697.
69 NOURI A, SAGHAFIAN B, DELAVAR M, et al. Agent-based modeling for evaluation of crop pattern and water management policies[J]. Water Resources Management, 2019, 33(11): 3 707-3 720.
70 RAVAR Z, ZAHRAIE B, SHARIFINEJAD A, et al. System dynamics modeling for assessment of water-food-energy resources security and nexus in Gavkhuni Basin in Iran[J]. Ecological Indicators, 2020, 108: 105682.
71 FU Bojie, LIU Yanxu. The theories and methods for systematically understanding land resource[J]. Chinese Science Bulletin, 2021(4): 1-8.
傅伯杰, 刘焱序. 系统认知土地资源的理论与方法[J]. 科学通报, 2019, 64(21): 2 172-2 179.
72 DíAZ S, PASCUAL U, STENSEKE M, et al. Assessing nature's contributions to people[J]. Science, 2018, 359(6 373): 270-272.
73 TAHERZADEH O, BITHELL M, RICHARDS K. When defining boundaries for nexus analysis, let the data speak[J]. Resources, Conservation and Recycling, 2018, 137: 314-315.
74 ZHENG Minggui, Li Qi. Scenario prediction of China's oil resource demand in2020-2030[J]. Advances in Earth Science, 2020, 35(3): 286-296.
郑明贵, 李期. 中国2020—2030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3):286-296.
75 PENG Jian, Danna Lü, DONG Jianquan, et al. Processes coupling and spatial integration: characterizing ecological restoration of territorial space in view of landscape ecology[J]. Journal of Natural Resources, 2020, 35(1): 3-13.
彭建, 吕丹娜, 董建权, 等. 过程耦合与空间集成:国土空间生态修复的景观生态学认知[J]. 自然资源学报, 2020, 35(1): 3-13.
76 PENG Jian, LI Bing, DONG Jianquan, et al. Basic logic of territorial ecological restoration[J]. Chinese Land Sciences, 2020, 34(5): 18-26.
彭建, 李冰, 董建权, 等. 论国土空间生态修复基本逻辑[J]. 中国土地科学, 2020, 34(5): 18-26.
[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[3] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[4] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[5] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[6] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[7] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[8] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[9] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[10] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[11] 陈良侃, 陈少辉. “一带一路”沿线国家农作物虚拟水贸易时空格局及驱动因素分析[J]. 地球科学进展, 2021, 36(4): 399-412.
[12] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[13] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[14] 王翔宇, 王元慧, 高培超, 宋长青, 程昌秀, 沈石. “可持续社会指数”的研究综述与展望[J]. 地球科学进展, 2021, 36(3): 317-324.
[15] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
阅读次数
全文


摘要