地球科学进展 ›› 2011, Vol. 26 ›› Issue (5): 465 -476. doi: 10.11867/j.issn.1001-8166.2011.05.0465

综述与评述    下一篇

核形石研究现状与展望
杨仁超 1,2,樊爱萍 2,韩作振 2,迟乃杰 2   
  1. 1.山东省沉积成矿作用与沉积矿产重点实验室,山东青岛266510; 2.山东科技大学地质学院,山东青岛266510
  • 收稿日期:2010-08-31 修回日期:2011-03-22 出版日期:2011-05-10
  • 通讯作者: 杨仁超 E-mail:rc_yang@sina.com
  • 基金资助:

    山东省博士基金项目“山东省寒武—奥陶纪微生物沉积作用与成岩作用研究”(编号:BS2009HZ020)和“山东寒武系凝块石沉积机制及其地学意义”(编号:2010BSE06022);山东省高等学校科技计划项目“山东下古生界碳酸盐岩成岩作用研究”(编号:J09LE04)和“山东寒武系四统划分与国际地层对比”(编号:J08LD01)资助.

Status and Prospect of Studies on Oncoid

Yang Renchao 1,2, Fan Aiping 2, Han Zuozhen 2, Chi Naijie 2   

  1. 1.Key Laboratory of Depositional Mineralization & Sedimentary Minerals of Shandong Province,Qingdao266510, China; 2.College of Geological Science and Engineering, Shandong University of Science and Technology, Qingdao266510, China
  • Received:2010-08-31 Revised:2011-03-22 Online:2011-05-10 Published:2011-05-10

核形石作为微生物岩的一种重要颗粒结构类型,长期受到地质学家的广泛关注。通过广泛的文献资料调研,分别从核形石相关的定义、分类、成因环境、微生态系统、物质结构组成、生长机制、控制因素等7个方面总结了核形石的研究进展。并通过野外观测和室内综合分析,在山东微山寒武系馒头组中发现了一种核形石新类型,以无核心、无纹层、无定形、菌类含量高、菌结构清楚为显著特征,将其命名为凝块核形石。结合前人研究成果,提出新的核形石定义,并根据核形石的结构组成、结构特征及成因将核形石划分为泥晶纹层核形石、富屑纹层核形石、菌纹层核形石、复合纹层核形石、放射状构造核形石及凝块核形石等6种类型,认为凝块核形石是核形石向凝块石的过渡类型。

As an important granular structure type of microbialites, oncoid has been given extensive concern by geologists for a long time. Seven aspects of research progress on oncoid, such as definition, classification, forming environment, microecosystem, material and texture composition, growth mechanism and controlling factors, have been summarized in this paper by way of field and laboratory and literature study. Various sedimentary environments are sutible for deposition of oncoid, such as offshore intertidal zone, subtidal zone, organic bank, interbeach sea, delta, estuarine, lagoon, river, lake, tufa. etc. The growth mechanism of oncoid could be summarized by adherenceentrapment, calcification (calcification of microorganisms, biofilm and extracellular polymeric substance) and organic matter mineralization. It is significant for the forming of oncoid that benthonic cyanobacteria capture subaqueous sediment grains by adherence or entrapment. Deposition of fine-grained calcite particles involving abiotic organic polymer instead of biological activity is another important process of sedimentation.Sequence stratigraphy is a deciding factor for the forming of oncoid that it is controlled by fluctuation of sea level. Water energy, water depth, oxygen content, salinity, acidity, temperature, and transportation of sediments change by fluctuation of sea level. Oncoids output adjacent to sequence boundary, in low stand system tract, in transgressive stand system tract, near to maximum flooding surface, and in high stand system tract. What is more, distinct differences of structural features and morphology of oncoids exist in defferent status of sequence stratigraphy. Cortex texture and morphology of oncoids have important denotative meaning of hydrodynamic environment because of additional information of water energy and wter depth indicated by biotic component, entrapped sediments and their changes. Factors of fluctuation of sea level, water depth, water temeprature, trophic level, and input of clay minerals all play important roals in the forming of oncoids. And these factors bear relations with ancient climate. The surface morphology of oncoid indicates the intensity of rolling on the sea floor and thus water energy, and water depth indirectly. The point sources of terrigenous input and platform morphology increase the spatial heterogeneity of nutrient distribution and thus trophic level. Nutrient element of nitrogen and phosphorus are essential for the growth of oncoid. The high ratio of nitrogen to phosphorus play decisive role in the composition of extracellular polymeric substance. H gele D.(2006) proposed that Alz oncoids fulfilled the definition of an ecosystem because all necessary trophic levels (e.g. primary producers, consumer, and decomposers) are present in complex communities of microbial mats and biofilms. Oncoids were formed in low-lying areas or depression with ralatively low depositional velocity. As a result, changes of platform morphology are partly responsible for the ptchy distribution of onciod-rich facies and oncoid types. Some oncoid-rich limestone strata are capped by sandstone and grainstone (such as ooid bars and calcarenite), which indicate that migration of terrigenous classtic deposits, intraclast and ooid may change the environment, and thus expire the growth and depostion of oncoid. A new type of oncoid, charactered by coreless, non-lamina, amorphism, rich of algae, clear algae, which is named as phycomycetes-clotted oncoid, was discovered in Mantou formation of Cambrian system in Weishan county, Shandong province, by means of field measurement and synthetical indoor analysis. It is considered that phycomycetes-clotted oncoid is a transitional type between oncoids and clots. Difination of oncoid will be developed with increasing studies all over the world. A new defination of oncoid has been proposed in this paper combining with personal research and previous research achievements. Oncoid is a kind of concretion forms carbonate grain that it is formed in microbially dominated ecosystem through adherence-entrapment of debris and carbonate mineral during growth of muciparous cyanobacteria or other microorganisms in-situ growth of free-lying or overturned on the sedimentary floor. Usually, Oncoids were classified by morphological feature of core (nuclei)and cortex(coatings), characteristics of main components of oncoid, combining of morphology and forming environment.Classification of various types of oncoid is gradually reaches perfection with study progresses and newfounds. Oncoids were divided into micrite envelope oncoid, debris envelope oncoid, algae envelope oncoid, multiple envelope oncoid, radiated envelope oncoid and phycomycetes-clotted oncoid by texture component and texture features.Environment and growth mechanism of oncoid are becoming hot spots of carbonatite research. Scope of oncoid studies is becoming more and more extensively both on geologic history and geography. Synthetic interdisciplinarity study trend of paleogeography, sequence stratigraphy, micropaleontology, biochemistry,and geochemistry has been forming in recent years. Significance of oncoid study on multidisciplinary of earth science will be concerned in the near future.

中图分类号: 

[1]Heim A. Monographie der ChurfrstenMattstock Gruppe (3 Teil)[M]. Beitr Geol Karte Schweiz NF 20,1916:369-573.
[2]Logan B W, Rezark R, Ginsburg R N. Classification and environmental significance of algal stromatolites[J].Journal of Geology,1964,72:68-83.
[3]Wolf K H. Petrogenesis and paleoenvironment of devonian algal limestones of New South Wales[J].Sedimentology,1965,4: 113-178.
[4]Dahanayake K.Classification of oncoids from the Upper Jurassic carbonates of the French Jura[J].Sediment Geology,1977,18: 337-353.
[5]Glass S W.The Peterson limestoneEarly Cretaceous lacustrine carbonate deposition in western Wyoming and southeastern Idaho[J].Sediment Geology,1980,27(2): 143-160.
[6]Mei Mingxiang, Ma Yongsheng, Zhou Pikang, et al. Introduction of Carbonate Sedimentary[M].Beijing: Seismological Press,1997:32-36.[梅冥相,马永生,周丕康,等.碳酸盐沉积学导论[M].北京:地震出版社,1997:32-36.]
[7]Zhao Chenglin, Zhu Xiaomin. Sedimentary Petrology[M]. Beijing: Petroleum Industry Press, 2001:155. [赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社,2001:155.]
[8]Peryt T M.Oncoidsacomment to recent developments[M]Peryt T M, ed.Coated Grains. New York:Springer Berlin Heideberg, 1983: 273-275. [9]Dahanayake K.Sequential position and environmental significance of different types of oncoids[J].Sediment Geology,1978,20:301-316.
[10]Li Xizhe,Guan Shourui,Xie Qingbin, et al. The oncoids genesis in the middle member of the Guanzhuang Formation of Eocene in Pingyi Basin[J].Acta Petrologica Sinica, 2000,16(2):261-268.[李熙哲,管守锐,谢庆宾,等.平邑盆地下第三系官中段核形石成因分析[J].岩石学报,2000,16(2):261-268.]
[11]Riding R. Microbial carbonates:The geological record of calcified bacterialalgal mats and biofilms[J].Sedimentology, 2000, 47: 179-214.
[12]Mei Mingxiang. Revised classification of microbial carbonates:Complementing the classification of limestones[J].Earth Science Frontiers, 2007,14(5):222-232.[梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘,2007,14(5):222-232.]
[13]Jiang Yuehua, Yue Wenzhe, Ye Zhizheng. Oncoids in the carbonateof Chuanshan formation Yangtze terrane[J]. Bulletin of the Nanjing Institute of Geology M.R,Chinese Academy of Geological Science,1990,11(2):57-72.[姜月华,岳文浙,业治铮.扬子地体船山组碳酸盐岩中的核形石[J].中国地质科学院南京地质矿产研究所所刊,1990,11(2):57-72.]
[14]Zeng Yunfu, Zhang Jinquan, Lin Wenqiu, et al. Types and environmental significance of oncoids from Yongxian Formation of the Upper Devonian in Siding, Guangxi[J].Acta Sedimentologica Sinica, 1983,1(1):42-49.[曾允孚,张锦泉,林文球,等.广西泗顶泥盆系上统融县组中核形石的类型及其环境意义[J].沉积学报, 1983,1(1):42-49.]
[15]Flügel E. Microfacies of Carbonate Rocks:Analysis,Interpretation and Application[M].Berlin, Heideberg,New York:Springer,2004:976.
[16]He Zi′ai. Classification and origin of oncolite[J].Oil & Gas Geology,1982,3(1):41-47.
[贺自爱.藻灰结核分类及其成因[J].石油与天然气地质,1982,3(1):41-47.]
[17]Stéphanie Verdriné, Andre Strasser, Wolfgang Hug.Oncoid growth and distribution controlled by sea level fluctuations and climate (late Oxford,Swiss Jura Mountains)[J].Facies, 2007,53: 535-552.
[18]Yang Yufang, Zhong Jianhua, Zeng Shiqi,et al. Characteristics of oncolites in the Early Cretaceous Qingshankou Formation,Songliao Basin and its environmental significance[J].Acta Geologica Sinica,2009,83(4):558-569.[杨玉芳,钟建华,曾石岐,等.松辽盆地早白垩世青山口组核形石的特征及其环境意义[J].地质学报,2009,83(4):558-569.]
[19]Weiss M P. Oncolites paleoecology and Laramide tectonics central Utah[J]. American Association of Petrolleum,1969,38:215-223.
[20]Dupraz C, Strasser A. Microbialites and micro encrusters in shallow coral bioherms (Middle to Late 0xfordian.Swiss Jura Mountains)[J].Facies,1999,40:101-130.
[21]Strasser A, Samankassou E. Carbonate sedimentation rates today and in the past:Holocene of Florida Bay, Bahamas and Bermuda versus Upper Jurassic and Lower Cretaceous of the Jura Mountains(Switzerland and Fr[J].Geology of Croatia, 2003, 56:1-18.
[22]Strasser A, Védrine S. Controls on facies mosaics of carbonate platforms: A case study from the Oxfordian of the Swiss Jura[J]. Special Publication of the International Association of Sedimentologists,2009, 41: 199-213.
[23]Strasser A, Hillgrtner H, Hug W,et al.Thirdorder depositional sequences resulting from Milankovitch cycles[J].Telta Nova, 2000, 12: 303-311.
[24]Gao Jianping, Zhu Shixing. Cambrian microbialites from the northeastern Shanxi province and their relation to sedimentary environments[J].Acta Micropalaeontologica Sinica,1998,15(2):166-177.[高建平,朱士兴.晋东北地区寒武系微生物岩及其与沉积环境的关系[J].微体古生物学报,1998,15(2):166-177.]
[25]Ma Boyong, Wang Xunlian, Wang Genhou, et al. Carbonate microfacies and sedimentary environment of the Middle Jurassic Buqu Formation in the Gongri area,eastern part of the Qiangtang Basin,Tibet,China[J].Geological Bulletin of China,2009,28(5): 609-617.[马伯永,王训练,王根厚,等.青藏高原羌塘盆地东缘贡日地区中侏罗统布曲组碳酸盐岩微相与沉积环境[J].地质通报,2009,28(5): 609-617.]
[26]Arp G, Mennerich C. Ostracod assemblages, palaeoenvironment and cyclicity of Purbecktype sedimenta of the Munder Formation(Lower Cretaceous,Hils Syncline,NGermany)[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2008, 264: 230-249.
[27]Zhang Yuanyuan, Yang Haijun, Wang Jianpo, et al. Oncolites from the Lianglitag Formation(Kaitian,Upper Ordovician),Tazhong, tarim block,NW China[J].Acta Micropalaeontologica Sinica,2009,26(3):234-242.[张园园,杨海军,王建坡,等.塔里木板块塔中上奥陶统良里塔格组的核形石[J].微体古生物学报,2009,26(3):234-242.]
[28]Hgele D, Leinfelder R, Grau J. Oncoids from the river Alz(southern Germany):Tiny ecosystems in a phosphoruslimited environment[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2006,237:378-395.
[29]Liu Wanzhu, Wang Pujun,Gao Youfeng, et al. Discovery of Oncolites in the Qingshankou Formation of Cretaceous,Songliao Basin and its environmental significance[J].Acta Geologica Sinica,2008,82(5): 594-600.[刘万洙,王璞君,高有峰,等. 松辽盆地白垩系青山口组核形石的发现及其环境意义[J].地质学报,2008,82(5): 594-600.]
[30]Stolz J F. Structure of microbial mats and biofilms[C]Riding R E, Awramik S M, eds. Microbial Sediments. Berlin, Heidelberg: SpringerVerlag, 2000:1-8.
[31]Decho A W. Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms[C]Riding R E,Awramik S M, eds. Microbial Sediments.Berlin, Heidelberg: SpringerVerlag, 2000:9-15.
[32]Pedley H M. Freshwater (phytoherm) reefs: The role of biofilms and their bearing on marine reef cementation[J].Sedimentary Geology, 1992,79: 255-274.
[33]Daniela H, Reinhold L.Oncoids from the river Alz southern Germany:Tiny ecosystems in a phosphorus limitedenvironment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,237:378-395.
[34]Barbara C, Roberto B,Gian G.Chemosynthetic microbialites in the Devonian carbonate mounds of Hamar Laghdad Antiatlas[J].Sedimentary Geology,2007,200:73-88.
[35]Pentecost A, Whitton B A. Limestones[C]Whitton B A,Potts M, eds. The Ecology of Cyanobacteria: Their Diversity in Time and Space. Dordrecht: Kluwer Academic Press, 2000:257-279.
[36]Deng Yu, Ma Xiang, Sheng Dong. Applications of electron microscope on study of deepsea manganese nodule[J].Journal of Chinese Electron Microscopy Society,2006,25(Suppl.):350-351.[邓昱,马翔,盛东.电子显微学在深海锰结核研究中的应用[J].电子显微学报,2006,25(增刊):350-351.]
[37]Neuweiler F, Rutsch M, Geipel G, et al. Soluble humic substances from in situ precipitated microcrystalline calcium carbonate, internal sediment, and spar cement in a Cretaceous carbonate mudmound[J].Geology, 2000, 28: 851-854.
[38]Hug W. Sequenzielle Faziesentwicklung der Karbonatplattform des Schweizer Jura im Spaten Oxford und frühesten Kimmeridge[C].GeoFocus 7.University Fribourg,2003:155.
[39]Arp G, Reiner Aersity,Rentner J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake,Indonesia[J].Journal of Sedimentary Research,2003, 73:105-127.
[40]Rameil N.Carbonate sedimentology sequence stratigraphy and cyclostratigraphy of the Tithonian in the Swiss and French Jura Mountains[C].GeoFocus 13 University Fribourg,2005:246.
[41]Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J].SedimentaryGeology,2006,185:229-238.
[42]Samankassou E, Strasser A, Di Gioia E, et al. Highresolution record of lateral variations on a shaIlow carbonate platforrn (Upper Oxfordian.Swiss Jura Mountains)[J].EcIogae Geulugicae Helvctiac,2003,96:425-440.
[43]Gradzinski M,Tyszka J,Alfred Uchman A,et al.Large microbialforaminiferal oncoids from condensed lowermiddle Jurrassic deposits: A case study from the Tatra Mountains,Poland[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,213:133-151.
[44]Shi G R,Chen Z Q.Lower Permian oncolites from south China:Implications for equatorial sealevel responses to Late Palaeozoic Gandwanan glaciation[J].Journal of Asian Earth Science,2006, 26:424-436.
[45]Huang Zhicheng,Zhu Sizhao.Origin of ironbearing nonskeletal oncolite and its role in concentrating iron in ordovician limestone, Anhui province[J].Acta Sedimentologica Sinica, 1987,5(2):29-39.[黄志诚,朱嗣昭.安徽奥陶系石灰岩中含铁非骨架核形石的成因及其聚铁作用[J].沉积学报,1987,5(2):29-39.]
[46]Michal G, Jaroslaw T, Alfred U, et al. Large microbialforaminiferal oncoids from condensed Lower Middle Jurassic deposits:A case study from the Tatra Mountains,Poland[J].Palaeogeography, Palaeoclimatology,Palaeoecology,2004,213:133-151.
[47]Cherchi A,Schroeder R. Remarks on the systematic position of Lithocodium Elliott—A problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm[J].Facies,2006,52: 435-440.
[48]Fugagnoli A. Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps)[J].Palaeogeogr, Palaeoclimatol, Palaeoecol,2004, 205:111-130.
[49]Knorre H, von Krumbein W E. Bacterial calcification[C]Riding R E, Awramik S M, eds. Microbial Sediments. Berlin, Heidelberg:SpringerVerlag, 2000:24-31.
[50]Hammes F, Verstraete W. Key role of pH and calcium metabolism in microbial carbonate precipitation[J].Reviews Environmental Science & Bio/Technology,2002, 1:3-7.
[51]Sekar R, Nair K V K, Rao V N R,et al. Nutrient dynamics and successional changes in a lentic freshwater biofilm[J].Freshwater Biology,2002,47(10):1 893-1 907.
[52]Arenas C,Cabrera L,Ramos E.Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island(Spain)[J].Sedimentary Geology,2007,197:1-27.
[53]Olivier N,Carpentier C, MartinGarin B, et al. Coralmicrobialite reefs in pure carbonate versus mixed carbonatesiliciclastic depositional environments—The example of the Pagny-sur-Meuse section (Upper Jurassic.northeastern France)[J].Facies,2004,50:229-255.
[54]Li Wei, Liu Liping, Cao Long, et al.Research status and prospect of biological precipitation of carbonate[J].Advances in Earth Science,2009,24(6):597-605.[李为,刘丽萍,曹龙,等.碳酸盐生物沉积作用的研究现状与展望[J].地球科学进展,2009,24(6):597-605.]

[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[3] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[4] 刘景昱,方念乔. 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019, 34(6): 618-628.
[5] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[6] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[7] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[8] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[9] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[10] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[11] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[12] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[13] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[14] 张兴波,蒋勇军,邱述兰,曹敏,胡毅军. 农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476.
[15] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C 3/C 4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
阅读次数
全文


摘要