地球科学进展 ›› 2021, Vol. 36 ›› Issue (10): 1092 -1104. doi: 10.11867/j.issn.1001-8166.2021.082

矿产赋存进展 上一篇    

兰坪金顶蜂子山铅锌矿床的构造控矿:来自三维空间数据分析的证据
刘靖坤( ), 薛传东( ), 薛力鹏, 杨天云露, 曾招阳, 姚远涛, LENH Phan Duc, GHAZI Rehana   
  1. 昆明理工大学地球科学系,云南 昆明 650093
  • 收稿日期:2021-04-25 修回日期:2021-08-25 出版日期:2021-10-10
  • 通讯作者: 薛传东 E-mail:jingkun_Liu521@163.com;xuechuandong@kust.edu.cn
  • 基金资助:
    国家重点研发计划项目“深地资源勘查开采”(2016YFC0600306)

Structural Controlling Mineralization of the Fengzishan Zn-Pb Deposit at the Giant Jinding Ore Field in Western Yunnan Province SW China Insights from 3D Spatial Data Analysis

Jingkun LIU( ), Chuandong XUE( ), Lipeng XUE, Yunlu YANGTIAN, Zhaoyang ZENG, Yuantao YAO, Phan Duc LENH, Rehana GHAZI   

  1. Department of Earth Sciences,Kunming University of Science and Technology,Kunming 650093,China
  • Received:2021-04-25 Revised:2021-08-25 Online:2021-10-10 Published:2021-11-19
  • Contact: Chuandong XUE E-mail:jingkun_Liu521@163.com;xuechuandong@kust.edu.cn
  • About author:LIU Jingkun (1992-), male, Xianning City, Hubei Province, Ph. D student. Research areas include mineral deposit and regional metallogeny. E-mail: jingkun_Liu521@163.com
  • Supported by:
    the National Key Research and Development Program of China "Exploration and exploitation of deep resources"(2016YFC0600306)

滇西金顶超大型铅锌矿床的热液成矿和构造控矿特点突出,对其主要容矿岩石和断层耦合控矿机制仍不清楚。利用三维空间数据分析方法,对代表性的蜂子山铅锌矿床开展了矿化结构及其空间展布特征的综合研究。结果表明:Pb和Zn矿化中心呈现出东西向分带及差异性分段富集的特点,空间上并与黄铁矿、天青石(—重晶石)和石膏矿体共置;成矿流体的运聚受近SN向逆冲断层和近EW向走滑断层的共同控制,为其提供通道和沉淀空间;而金顶群(N1j)的湖相氧化性含矿卤水在两组方向断层的联合驱动下,在三合洞组上段(T3s3)地层中与其赋存的还原性流体幕式混合成矿,是该矿床发育的重要机制。尤其是,近SN向逆冲断层和近EW向走滑断层联合控矿特征的发现,为深入理解金顶超大型铅锌矿床成矿作用及指导找矿勘查提供了新的依据。

There occur huge amounts of lead,zinc and other metals hosted by a mixed clastic-carbonate sequence in the giant Jinding Zn-Pb Ore Field in western Yunnan Province, SW China. The discovered lead-zin core mineralization isobviously characterized by an epigenetic hydrothermal origin and the complexity of theore-hosted rocksand faults-controlling style. So far, the coupling mechanism amongst them is unclear. In thiscontribution, 3D spatial data analysis on the Fengzishan Zn-Pb deposit were used to constrain the ore mineralization architecture and its spatial distribution characteristics, and to infer the coupling controlling mechanism between the main hosting rocks and the ore-controlling structures. The results reveal that the approximate NS-trending thrust faults and EW-trending strike-slip faults exerted a first-order control on the migration and accumulation of the ore-forming fluids, and provided for prior pathways and precipitation space.The distribution of the lead and zinc mineralization centers for the main ore bodies are parallel with the probable EW-trending faults, and of typical with the heterogeneous and segmented enrichment. They are spatially associated and/or intergrowth with pyrite, celestite(-barite)and gypsum as well. Therefore, the ore-forming fluids from the Miocene Jinding Group(N1 j)with a basinal brine in nature, have been driven and controlled bythe approximate NS-trending thrust faults and EW-trending strike-slip faults, and precipitated in the Upper of Sanhedong Formation(T3s3)by episodic mixing of multiple fluids. In particular, the discovery of this couple controlling on the ore mineralization by the approximate NS-trending thrust faults and EW-trending strike-slip faults and ore-hosted rocks, can provide us for understanding deeply the ore-forming mechanism and some key guidance for the future prospecting and exploration of this ore deposits, including similar deposits.

中图分类号: 

图1 金顶超大型铅锌矿区及蜂子山铅锌矿床地质图(据参考文献[ 48 ]和本次地质填图、坑道观测资料修编)
(a)金顶铅锌矿区地质简图;(b)蜂子山矿床地质图;(c)A-A'勘探线剖面图
Fig. 1 Geological map of the supergiant Jinding Zn-Pb ore field and the Fengzishan Zn-Pb deposit modified after reference 48 ], and this geological mapping and the channels survey results
(a) Geological map of the Jinding ore field; (b) The Fengzishan deposit; (c) The exploration profile of line A-A' of the Fengzishan deposit
图2 蜂子山矿地质建模及构造控矿分析工作流程
Fig. 2 Workflow for 3D geological modeling and structural controlling mineralization analysis in the Fengzishan deposit
图3 蜂子山矿床的三维地质模型
(a)地表、钻孔和中段巷道;(b)地层;(c)断层;(d)铅锌矿体与T 3 s 3上覆不整合面叠加;(e)铅锌矿体与断层、伴生地质体叠加;(f)铅锌矿体与断层、岩性叠加
Fig. 3 Three-dimensional geological model of the Fengzishan deposit
(a) Surface, drill holes and level tunnels; (b) Stratum; (c) Fault; (d) Superposition of lead-zinc orebodies and overlying unconformity of T 3 s 3; (e) Superposition of lead-zinc orebodies, faults and associated geological bodies; (f) Superposition of lead-zinc orebodies, faults and lithologic stratigraphy
图4 蜂子山矿床PbZnFe含量的块体模型
Fig. 4 Block model of Pb Zn and Fe contents in the Fengzishan deposit
图5 蜂子山矿床2 4202 374 m中段水平面PbZnPb/Zn品位等值线图
(a)~(c)为2 420 m中段,(d)~(f)为2 374 m中段,中段位置见图1(c)
Fig. 5 Contour map of Pb Zn grades and Pb/Zn ratio at the 2 420 and 2 374 m levels
respectively in the Fengzishan deposit
(a)~(c) 2 420 m levels, (d)~(f) 2 374 m levels, their position is shown in Fig.1(c)
图6 蜂子山矿床勘探线A-A'横剖面PbZnFePb+Zn品位及Pb/ZnFe/Pb+Zn)值等值线图
剖面位置见图1(b)
Fig. 6 Contour map of Pb Zn Fe Pb+Zn grades and Pb/Zn Fe/Pb+Zn ratios in the exploration cross section A-A' in the Fengzishan deposit
The section position is shown in Fig.1(b)
图7 蜂子山矿床勘探线B-B'纵剖面PbZnFePb+Zn品位及Pb/ZnFe/Pb+Zn)值等值线图
剖面位置见图1(b)
Fig. 7 Contour map of Pb Zn Fe Pb+Zn grades and Pb/Zn Fe/Pb+Zn ratios in the exploration longitudinal section B-B' in the Fengzishan deposit
The section position is shown in Fig.1(b)
图8 蜂子山矿床流体运聚及构造控矿机制
Fig. 8 Fluid migration and accumulation and structural controlling mineralization mechanism in the Fengzishan Zn-Pb deposit
1 The 11th Geological Brigade of Yunnan Geological and Mineral Bureau. Detailed exploration geological report of Jinding Zn-Pb deposit in Lanping Basin, northwestern Yunnan [R]. Kunming: the 11th Geological Brigade of Yunnan Geological and Mineral Bureau, 1984.
云南省地质矿产局第十一地质大队. 云南省兰坪县金顶铅锌矿详细勘探地质报告[R]. 昆明:云南省地质矿产局第十一地质大队,1984.
2 BAI Jiafen, WANG Changhuai, NA Rongxian. Geological characteristics of the Jinding lead-zinc deposit in Yunnan with a special discussion on its genesis [J]. Mineral Deposits, 1985, 4(1): 1-10.
白嘉芬, 王长怀, 纳荣仙. 云南金顶铅锌矿床地质特征及成因初探[J]. 矿床地质, 1985, 4(1): 1-10.
3 ZHAO Xingyuan. On the genesis of the Jinding lead-znic ore deposit, Yunnan [J]. Earth Science, 1989, 14(5): 523-530.
赵兴元.云南金顶铅锌矿床成因研究[J]. 地球科学, 1989, 14(5): 523-530.
4 ZHANG Qian. A study on genesis of Jinding Pb-Zn deposit in Yunnan Province [J]. Contributions to Geology and Mineral Resources Research, 1991, 6(2): 47-58.
张乾. 云南金顶铅锌矿床成因研究[J]. 地质找矿论丛, 1991, 6(2): 47-58.
5 WANG Jingbin, LI Chaoyang, CHEN Xiaozhong. Preliminary study of the exhalative sedimentary genesis of Jinding Pb-Zn deposit [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1990, 9(2): 122-123.
王京彬, 李朝阳, 陈晓钟. 金顶超大型铅锌矿喷流沉积成因初探[J]. 矿物岩石地球化学通报, 1990, 9(2): 122-123.
6 GAO Guangli. Review of geological origin about Jinding Lead-Zinc ore deposit [J]. Earth Science, 1989, 14(5): 467-475.
高广立. 论金顶铅锌矿床的地质问题[J]. 地球科学, 1989, 14(5): 467-475.
7 MOU Chuanlong, YU Qian. Discussion on the geological features and origin of Jinding Lead-Zinc ore deposit [J]. Jourual of Mineralogy Petrology, 2004, 24(1): 48-51.
牟传龙, 余谦. 金顶铅锌矿床相关地质问题及成因探讨[J]. 矿物岩石, 2004, 24(1): 48-51.
8 XUE Chunji, CHEN Yuchuan, YANG Jianmin, et al. Jinding Pb-Zn deposit: geology and geochemistry [J]. Mineral Deposits, 2002, 21(3): 270-277.
薛春纪, 陈毓川, 杨建民, 等. 金顶铅锌矿床地质—地球化学[J]. 矿床地质, 2002, 21(3): 270-277.
9 XUE Chunji, CHEN Yuchuan, ZENG Rong, et al. Fluid dynamic processes of large-scale mineralization in the Lanping Basin, Yunnan, SW, China: evidence from fluid inclusions and basin fluid modeling [J]. Earth Science Frontiers, 2007, 14(5): 147-157.
薛春纪, 陈毓川, 曾荣, 等. 西南三江兰坪盆地大规模成矿的流体动力学过程——流体包裹体和盆地流体模拟证据[J]. 地学前缘, 2007, 14(5): 147-157.
10 WANG Anjian, CAO Dianhua, GAO Lan, et al. A probe into the genesis of Jinding super-large lead-zinc ore deposit [J]. Acta Geologica Sinica, 2009, 83(1): 43-54.
王安建, 曹殿华, 高兰, 等. 论云南兰坪金顶超大型铅锌矿床的成因[J]. 地质学报, 2009, 83(1): 43-54.
11 KYLE J R, LI N. Jinding: a giant tertiary sandstone-hosted Zn-Pb deposit, Yunnan, China [J]. Society of Economic Geology Newsletters, 2002, 50(1): 9-16.
12 XUE C J, ZENG R, LIU S W, et al. Geologic fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan,South China: a review[J]. Ore Geology Reviews, 2007, 31(1/4): 337-359.
13 XUE C J, CHI G X, FAYEK M. Micro-textures and in situ sulfur isotopic analysis of spheroidal and zonal sulfides in the giant Jinding Zn-Pb deposit, Yunnan, China: implications for biogenic process [J]. Journal of Asian Earth Sciences, 2015, 103: 288-304.
14 YU Jing, XUE Chuandong, YANG Tiannan, et al. Mineralization resulting from multistage fluids mixing at Paomaping Zn-Pb deposit in Jinding, Lanping Basin, northwestern Yunnan Province—evidence from ore micro-textures [J]. Mineral Deposits, 2017, 36(2): 391-411.
余静, 薛传东, 杨天南, 等. 兰坪金顶跑马坪铅锌矿床幕式流体混合成矿作用——矿石组构证据[J]. 矿床地质, 2017, 36(2): 391-411.
15 LEACH D L, SONG Y C, HOU Z Q. The world-class Jinding Zn-Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China [J]. Mineralium Deposita, 2017, 52: 281-296.
16 WEN Chunqi, CAI Jianmin, LIU Wenzhou, et al. Geochemical charcteristics of fluid inclusions in the Jinding Zn-Pb deposit, Yunnan, China [J]. Jourual of Mineralogy Petrology, 1995, 15(4): 78-84.
温春齐, 蔡建明, 刘文周, 等. 金顶铅锌矿床流体包裹体地球化学特征[J]. 矿物岩石, 1995, 15(4): 78-84.
17 CHI G X, QING H R, XUE C J. Modeling of fluid pressure evolution related to sediment loading and thrust faulting in the Lanping basin: implications for the Jinding Zn-Pb deposit, Yunnan, China [J]. Journal of Geochemical Exploration, 2006, 89: 57-60.
18 GAO Yongbao, XUE Chunji, ZENG Rong. Geochemistry of organic matters in the Jinding zinc-lead deposit, Lanping Basin, Northwest Yunnan Province [J]. Geochimica, 2008, 37(3): 223-232.
高永宝, 薛春纪, 曾荣. 滇西北兰坪金顶铅锌矿床有机物质地球化学[J]. 地球化学, 2008, 37(3): 223-232.
19 TANG Yongyong, BI Xianwu, HE Liping, et al. Geochemical characteristics of trace elements, fluid inclusions and carbon-oxygen isotopes of calcites in the Jinding Zn-Pb deposit, Lanping, China [J]. Acta Petrologica Sinica, 2011, 27(9): 2 635-2 645.
唐永永, 毕献武, 和利平, 等. 兰坪金顶铅锌矿方解石微量元素、流体包裹体和碳—氧同位素地球化学特征研究[J]. 岩石学报, 2011, 27(9): 2 635-2 645.
20 LUO Junlie, YANG Youhua, ZHAO Zhun. The evolution of Tethys in western Yunnan and the mineralization of major metal deposits [M]. Beijing: Geological Publishing House, 1994.
罗君烈, 杨友华, 赵准. 滇西特提斯的演化及主要金属矿床的成矿作用[M]. 北京: 地质出版社, 1994.
21 XUE Chunji, ZENG Rong, GAO Yongbao, et al. Fluid processes of a heavy metallogenesis at Jinding, Lanping, SW China [J]. Acta Petrologica Sinica, 2006, 22(4): 1 031-1 039.
薛春纪, 曾荣, 高永宝, 等. 兰坪金顶大规模成矿的流体过程——不同矿化阶段流体包裹体微量元素约束[J]. 岩石学报, 2006, 22(4): 1 031-1 039.
22 XUE Chunji, GAO Yongbao, ZENG Rong, et al. Organic petrography and geochemistry of the giant Jinding deposit, Lanping Basin, northwestern Yunnan, China [J]. Acta Petrologica Sinica, 2007, 23(11): 2 889-2 900.
薛春纪, 高永宝, 曾荣, 等. 滇西北兰坪盆地金顶超大型矿床有机岩相学和地球化学[J]. 岩石学报, 2007, 23(11): 2 889-2 900.
23 WANG Yanbin, ZENG Pusheng, LI Yanhe, et al. He-Ar isotope composition of Jinding and Baiyangping mineral deposit and its significance [J]. Jourual of Mineralogy Petrology, 2004, 24 (4): 76-80.
王彦斌, 曾普胜, 李延河, 等. 云南金顶和白秧坪矿床He, Ar同位素组成及其意义[J]. 矿物岩石, 2004, 24(4): 76-80.
24 HU R Z, TURNER G, BURNARD P G, et al. Helium and argon isotopic geochemistry of Jinding super-large Pb-Zn deposit [J]. Science in China (Series D), 1998, 41(4): 442-448.
25 XUE Chunji, CHEN Yuchuan, YANG Jianmin, et al. Analysis of ore-forming background and tectonic system of Lanping Basin, western Yunnan Province [J]. Mineral Deposits, 2002, 21(1): 36-44.
薛春纪, 陈毓川, 杨建民, 等. 滇西兰坪盆地构造体制和成矿背景分析[J].矿床地质, 2002, 21(1): 36-44.
26 LIU Junlai, WANG Anjian, ZHAI Yunfeng, et al. Structural framework and Ore-Control ling structures of Jinding Superlarge Lead-Zinc deposit in Yunnan [J]. Acta Geologica Sinica, 2009, 83(10): 1 376-1 387.
刘俊来, 王安建, 翟云峰, 等. 云南金顶超大型铅锌矿区的构造格架与控矿构造问题讨论[J]. 地质学报, 2009, 83(10): 1 376-1 387.
27 HOU Zengqian, SONG Yucai, LI Zheng, et al. Thrust-controlled, sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt: geological features and tectonic model [J]. Mineral Deposits, 2008, 27(2): 123-144.
侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J]. 矿床地质, 2008, 27(2): 123-144.
28 SONG Y C, LIU Y C, HOU Z Q, et al. Sediment-hosted Pb-Zn deposits in the Tethyan domain from China to Iran: characteristics, tectonic setting, and ore controls [J]. Gondwana Research, 2019, 75: 249-281.
29 XIAO K Y, LI N, PORWAL A, et al. GIS-based 3D prospectivity mapping: a case study of Jiama copper- polymetallic deposit in Tibet, China [J]. Ore Geology Reviews, 2015, 71: 611-632.
30 MAO X C, REN J, LIU Z K, et al. Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, eastern China: a case study of the Dayingezhuang deposit [J]. Journal of Geochemistry Exploration, 2019, 203: 27-44.
31 LI X H, YUAN F, ZHANG M M, et al. Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China [J]. Ore Geology Reviews, 2015, 71: 633-654.
32 LI N, SONG X L, XIAO K Y, et al. A demonstration of integrating multiple-scale 3D modelling into GIS-based prospectivity analysis: a case study of the Huayuan-Malichang district, China [J]. Ore Geology Reviews, 2018, 95(2): 292-305.
33 NIELSEN S H H, CUNNINGHAM F, HAY R, et al. 3D prospectivity modelling of orogenic gold in the Marymia Inlier, western Australia [J]. Ore Geology Reviews, 2015, 71: 578-591.
34 WANG G W, LI R X, CARRANZA E J M, et al. 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China [J]. Ore Geology Reviews, 2015, 71: 592-610.
35 MAO Xiancheng, ZOU Yanhong, CHEN Jin, et al. 3D visual prediction of concealed ore body [M]. Changsha: Central South University Press, 2011.
毛先成, 邹艳红, 陈进, 等. 隐伏矿体三维可视化预测[M]. 长沙: 中南大学出版社, 2011.
36 CHEN J P, SHI R, CHEN Z P, et al. 3D positional and quantitative prediction of the Xiaoqinling gold ore belt in Tongguan, Shanxi, China [J]. Acta Geologica Sinica, 2012, 86(3): 653-660.
37 ZUO R G. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas [J]. Journal of Geochemistry Exploration, 2014, 136: 93-101.
38 PAYNE C, CUNNINGHAM F, PETERS K J, et al. From 2D to 3D: prospectivity modelling in the Taupo volcanic zone, New Zealand [J]. Ore Geology Reviews, 2015, 71: 558-577.
39 GAO Y, ZHANG Z J, XIONG Y H, et al. Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China [J]. Ore Geology Reviews, 2016, 75: 16-28.
40 LIU Z K, MAO X C,DENG H, et al. Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan: insights from geochemical effects of alteration, mineralization and trace elements in pyrite [J]. Ore Geology Reviews, 2018, 102: 368-385.
41 CHEN Jianping, YU Pingping, SHI Rui, et al. Research three-dimensional quantitative prediction and evaluation method of regional concealed orebodies [J]. Earth Science Frontiers, 2014, 21(5): 211-220.
陈建平, 于萍萍, 史蕊, 等. 区域隐伏矿体三维定量预测评价方法研究[J]. 地学前缘, 2014, 21(5): 211-220.
42 MAO X C, ZHANG B, DENG H, et al. Three-dimensional morphological analysis method for geologic bodies and its parallel implementation [J]. Computer and Geosciences, 2016, 96: 11-22.
43 YUAN F, LI X H,ZHANG M M, et al. Three dimensional weights of evidence-based prospectivity modelling: a case study of Baixiangshan mining area, Ningwu Basin, middle and lower Yangze metallogenic belt, China [J]. Journal of Geochemistry Exploration, 2014, 145: 82-97.
44 BASSON I, LOURENS P, PAETZOLD H D, et al. Structural analysis and 3D modelling of major mineralizing structures at the Phalaborwa copper deposit [J]. Ore Geology Reviews, 2017, 83: 30-42.
45 HU X Y, YUAN F, LI X H, et al. 3D characteristic analysis-based targeting of concealed Kiruna-type Fe oxide-apatite mineralization within the Yangzhuang deposit of the Zhonggu ore field, southern Ningwu volcanic basin, middle-lower Yangtze River metallogenic belt, China [J]. Ore Geology Reviews, 2018, 92: 240-256.
46 TORREMANS K, KYNE R, DOYLE R, et al. Controls on metal distributions at the Lisheen and Silvermines deposits: insights into fluid flow pathways in Irish-type Zn-Pb deposits [J]. Economic Geology, 2018, 113(7): 1 455-1 477.
47 LI X H, YUAN F, ZHANG M M, et al. 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe-Cu skarn-type mineralization within the Yueshan ore field, Anqing district, Anhui Province, China [J]. Ore Geology Reviews, 2019, 105: 1-17.
48 YANG Tiannan, XUE Chuandong, YANG Zhusen, et al. Results report of the secondary project of medium-large scale mapping (pilot) in three types of typical ore concentration areas on the Tibet Plateau [R]. Beijing: Institute of Geology, Chinese Academy of Geological Sciences, 2019.
杨天南, 薛传东, 杨竹森, 等. 青藏高原三类典型矿集区中—大比例尺填图(试点)二级项目成果报告[R]. 北京:中国地质科学院地质研究所,2019.
49 The Third Geological Brigade of Yunnan Geological and Mineral Bureau. Geological report of Fengzishan Ore Block of Jinding Zn-Pb Deposit in Lanping Basin, northwestern Yunnan [R]. Kunming: The Third Geological Brigade of Yunnan Geological and Mineral Bureau, 1990.
云南省地质矿产局第三地质大队. 云南省兰坪县金顶铅锌矿蜂子山矿段详细普查地质报告[R]. 昆明:云南省地质矿产局第三地质大队,1990.
50 LIU Jingkun. Mineralization characteristics and structural ore control based on three-dimensional spatial data analysis of the Fengzishan lead-zinc deposit at Jinding ore field in NW Yunnan Province [D]. Kunming: Kunming University of Science and Technology, 2020.
刘靖坤. 基于三维空间数据分析的兰坪金顶蜂子山铅锌矿床的矿化特征及构造控矿解析[D]. 昆明:昆明理工大学,2020.
51 FLYNN R T, BURNHAM C W. An experimental determination of rare Earth partition coefficients between a chloride containing vapor phase and silicate melts [J]. Geochimica et Cosmochimica Acta, 1978, 42: 685-701.
52 URABE T. Aluminous granite as a source magma of hydrothermal ore deposits: an experimental study [J]. Economic Geology, 1985, 80: 148-157.
53 CANDELA P A, BLEVIN P L. Do some microlitic granites preserve evidence of magmatic volatile phase permeability? [J]. Economic Geology, 1995, 90: 2 310-2 316.
54 LI Jiazeng. Separation polymerization of lead and zinc and its mineralization significance endogenous process-source of metallogenic material in lead-zinc deposit in Wubu, Zhejiang [J]. Journal of Guilin Institute of Metallurgy and Geology, 1984, 4(1): 39-48.
李嘉曾. 内生过程铅锌的分离聚合及其成矿意义——浙江五部铅锌矿床成矿物质来源[J]. 桂林冶金地质学院学报, 1984, 4(1): 39-48.
55 DAI Tagen, GONG Linglan, ZHANG Qizuan. Applied geochemistry [M]. Beijing: Geological Publishing House, 2005.
戴塔根, 龚铃兰, 张起钻. 应用地球化学[M].北京: 地质出版社, 2005.
[1] 徐兴旺,蔡新平,肖骑彬,梁光河,张宝林,王杰. 滇西北衙地区热水岩溶作用及其伴生的地质灾害[J]. 地球科学进展, 2003, 18(6): 912-920.
[2] 徐兴旺,蔡新平. 隐伏矿床预测理论与方法的研究进展[J]. 地球科学进展, 2000, 15(1): 76-83.
阅读次数
全文


摘要