Please wait a minute...
img img
高级检索
地球科学进展  2010, Vol. 25 Issue (2): 133-139    DOI: 10.11867/j.issn.1001-8166.2010.02.0133
综述与评述     
大气廓线物理反演的最优化方法进展
蒋德明1;董超华2
1.湖南省气象科学研究所,长沙  410015; 2.国家卫星气象中心,北京  100081
A Review of Optimal Algorithm for Physical Retrieval of Atmospheric Profiles
Jiang Deming1, Dong Chaohua2
1. Hunan Research Institute of Meteorological Science, Changsha  410015, China;2.National Satellite Meteorological Center,CMA, Beijing  100081, China
 全文: PDF(1023 KB)  
摘要:

从最优化数学理论角度对大气廓线物理反演以及卫星辐射率资料直接同化中的最优化算法进行了回顾。分析了各种方法的优点和缺点、联系和差别。总结了卫星大气遥感反演问题的求解思路。对大气廓线反演研究中几种主要的目标函数和寻优策略进行了分析,着重分析了目前作为各数值预报中心和卫星数据处理中心业务数值产品核心算法的牛顿非线性迭代法的不足之处,并对其改进途径进行了探讨。引入了LevenbergMarquardt方法及信赖域方法用于大气廓线反演,使反演算法的收敛性质得到改善。

关键词: 廓线遥感反演最优化辐射率    
Abstract:

Methods for physical retrieval of atmospheric profiles and direct assimilation of satellite radiances are reviewed on optimization theory basis. Advantages and disadvantages, differences and relationships between various methods are discussed. General strategies for optimal inversion of atmospheric profiles from satellite data are introduced. A few important special objective functions and search algorithms currently used in the atmospheric iteration inversion techniques are analyzed and compared. Typically, the Newton′ non-linear iteration method which is currently adopted as the core algorithm in the numerical weather analysis/forecast centers and in satellite data centers for their operational numerical products is discussed. Levenberg-Marquardt method and trust region method are proposed for atmospheric profiles retrieval which is capable of helping the improvement of the convergence properties of the inversion algorithm.

Key words: profile    Remote sensing    retrieval    optimazation    radiance
收稿日期: 2009-04-10 出版日期: 2010-02-10
:  P412.27  
基金资助:

 国家自然科学基金面上项目“红外高光谱大气参数反演研究”(编号:40475016);国家高技术研究发展计划项目“高光谱大气红外探测器辐射率资料的直接同化技术研究”(编号:2007AA12Z140)资助

通讯作者: 蒋德明     E-mail: dmjiang@nsmc.cma.gov.cn
作者简介: 蒋德明(1962-),男,湖南道县人,副研究员,主要从事大气遥感探测研究. E-mail:dmjiang@nsmc.cma.gov.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒋德明
董超华

引用本文:

蒋德明,董超华. 大气廓线物理反演的最优化方法进展[J]. 地球科学进展, 2010, 25(2): 133-139.

Jiang Deming, Dong Chaohua. A Review of Optimal Algorithm for Physical Retrieval of Atmospheric Profiles. Advances in Earth Science, 2010, 25(2): 133-139.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2010.02.0133        http://www.adearth.ac.cn/CN/Y2010/V25/I2/133

[1] Chahine M. Inverse problems in radiative transfer: Determination of atmospheric parameters[J].Journal of Atmospheric Science,1970,27: 960-967.
[2] Smith W L. Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere[J].Applied Optics,1970, 9: 1 993-1 999.
[3] Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[J].Reviews of Geophysics and Space Physics,1976,14(4): 609-624.
[4] Smith W L, Woolf H M, Revercomb H E. Linear simultaneous solution for temperature and absorbing constituent profiles from radiance spectra[J].Applied Optics,1991,30(9): 1 117-1 123.
[5] Yuan Yaxiang,Sun Wenyu.Optimization Theory and Methods[M].Beijing:Science Press,1997:521-558.[袁亚湘,孙文瑜,最优化理论与方法[M].北京:科学出版社,1997:521-558.]
[6] Li Jun, Huang Sixun. Application of improved discrepancy principle in inversion of atmosphere infrared remote sensing[J].Science in China (Series D),2001,31(1):70-80.[李俊,黄思训. 改进的偏差原则在大气红外遥感及反演中的应用[J].中国科学:D辑,2001,31(1):70-80.]
[7] Zhu Guofu,Xue Jishan,Zhang Hua,et al.Direct assimilation of satellite radiance data in the GRAPES variational analysis system[J].Chinese Science Bulletin,2008,53(20):2 424-2 427.[朱国富,薛纪善,张华,等.GRAPES 变分同化系统中卫星辐射率资料的直接同化\[J].科学通报,2008,53(20):2 424 -2 427.]
[8] Lorenc A C. Analysis methods for numerical weather prediction[J].Quarterly Journal of the Royal Meteorological Society,1986, 112: 1 177-1 194.
[9] Lorenc A C. Optimal nonlinear objective analysis[J].Quarterly Journal of the Royal Meteorological Society,1988,114: 205-240.
[10] Eyre J R. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS[J].Quarterly Journal of the Royal Meteorological Society,1989,115(489): 1 001-1 026.
[11] Eyre J R. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II: Application to TOVS data[J].Quarterly Journal of the Royal Meteorological Society,1989,115(489): 1027-1 037.
[12] Chahine M T, Aumann H, Goldberg M,et al.AIRS-Team retrieval for core products and geophysical parameters. AIRS Algorithm Theoretical Basis Doc., Version 2.2[DB/OL]. JPL D-17006,http://eospso.gsfc.nasa.gov/ eos_homepage/ for_scientists/ atbd/ docs/ AIRS/ atbd-airs-L2.pdf.2002.
[13] Rodgers C D. Inverse Methods for Atmospheric Sounding: Theory and Practice Series on Atmospheric, Oceanic and Planetary Physics, Vol.II[M]. World Scientific Publishing Company,2000.
[14] Li J. Temperature and water vapor weighting functions from radiative transfer fquation with surface emissivity and solar reflectivity[J].Advances in Atmospheric Sciences,1994,11(4): 421-426.
[15] Li Jun, Zeng Qingcun. Study of infrared remote sensing of the cloudy atmosphere and the inversion problem, Part I: Theoretical Study[J].Chinese Journal of Atmospheric Sciences,1997,21(1): 1-9.[李俊,曾庆存. 晴空时大气红外遥感及其反演问题I.理论研究[J]. 大气科学,1997,21(1): 1-9.] 
[16] Aumann H H, Chahine M T, Gautier C M D,et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41: 253-264.
[17] Buhler Y, Mason G, Perez J, et al. The EUMETSAT Polar System: Mission, System and Programmatics[C]//52nd International Astronautical Congress.Toulouse, France,2001.
[18] Goldberg M D, Qu Y, McMillin L M,et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41: 379-389.
[19] Dong Chaohua,Jiang Deming,Qi Chengli,et al. Experimental study on atmospheric parameters using new atmospheric sounding instrument data[J].Proceedings of the SPIE,2005,5 655(24):24-32.
[20] Jiang Deming, Dong Chaohua, Lu Weisong. Preliminary study on the capacity of high spectral resolution infrared atmospheric sounding instrument using AIRS measurements[J].Chinese Journal of Remote Sensing,2006, 10(4): 586592.[蒋德明,董超华,陆维松.利用AIRS观测资料进行红外高光谱大气探测能力试验研究[J].遥感学报, 2006,10(4): 586-592.]
[21] Ma X L, Schmit T J, Smith W L. A nonlinear physical retrieval algorithm, its application to the GOES-8/9 sounder[J].Journal of Applied Meteorology,1999,38:501-513.
[22] Zhang Peichang, Wang Zhenhui. Principles of Remote Sensing of atmospheric Parameters in Microwave[M].Beijing:China Meteorological Press,1995:351-352.[张培昌,王振会.大气微波遥感基础[M].北京: 气象出版社,1995:351-352.]
[23] Westwater E R, Strand O N. Statistical information content of radiation measu+rements used in indirect sensing[J].Journal of Atmospheric Science,1968, 25: 750-758.
[24] Reuter D, Susskind J, Pursch A. First-guess dependence of a physically based set of temperature humidity retrievals from HIRS2/MSU data[J].Journal of Atmospheric and Oceanic Technology,1988, 5:70-83.
[25] Lunacek M, Darrell Whitley L, Philip Gabriel, et al. Comparing search algorithms for the temperature inversion problem[C]//Proceedings of Genetic and Evolutionary Computation Conference. Seattle,WA, USA, Springer Berlin / Heidelberg Press, Vol.3102/2004: 1 340-1 351.
[26] Li J, Liu C Y, Huang H L, et al. Optimal cloud-clearing for AIRS radiances using MODIS[J].IEEE Transactions on Geoscience and Remote Sensing,2005, 43:1 266-1 278.
[27] Susskind J, Christopher D B,Blaisdell J, et al. Retrieval of Atmospheric and Surface Parameters From AIRS/AMSU/HSB Data in the Presence of Clouds[J].IEEE Transactions On Geoscience and Remote Sensing,2003, 41(2): 390-409.
[28] Chahine M T.Remote sounding of cloudy atmospheres. II. Multiple cloud formations[J].Journal of Atmospheric Science,1977, 34: 744-757.
[29] Chahine M T. Remote Sounding of cloudy atmospheres. I. The single cloud layer[J].Journal of Atmospheric Science,1974, 31: 233-243.
[30] Liu Q, Weng F. Advanced doubling adding method for radiative transfer in planetary atmospheres[J].Journal of Atmospheric Science,2006,63: 3 459-3 465.
[31] Koyama T, Vukicevic T, Sengupta M, et al. Analysis of information content of infrared sounding radiances in cloudy conditions[J]. Monthly Weather Review,2006,134:3 657-3 667.
[32] Vukicevic T, Sengupta M, Jones A S, et al. Cloud-resolving satellite data assimilation: Information content of IR window observations and uncertainties in estimation[J].Journal of Atmospheric Science,2006, 63: 901-919.
[33] Marshall J L,Jung J, Zapotocny T, et al. The application of AIRS radiances in numerical weather prediction[J]. Australian Meteorological Magazine,2006,55:213217.
[34] Jiang Deming. Approach to High Spectral Resolution Infrared Remote Sensing of Atmospheric Temperature and Humidity Profiles[D].Nanjing: Nanjing University of Information Science & Technology,2007:126-162.[蒋德明. 高光谱分辨率红外遥感大气温湿度廓线反演方法研究\[D\].南京:南京信息工程大学,2007:126-162.]
[35] Errico R M, Ohring G, Bauer P,et al. Assimilation of satellite cloud and precipitation observations in numerical weather prediction models: Introduction to the JAS special collection[J]. Journal of Atmospheric Science,2007a, 64: 3 737-3 741.
[36] Pavelin E, English S. Plans for Assimilation of Cloud-affected Infrared Soundings at the Met Office[D]. Proceedings of ITSC-XV, Maratea, Italy, 4th-10th October, 2006.
[37] Errico R M, Bauer P, Mahfouf J F. Issues regarding the assimilation of cloud and precipitation data[J].Journal of Atmospheric Science,2007b,64: 3 785-3 798.
[38] Lopez P. Cloud and precipitation parameterizations in modeling and variational data assimilation: A review[J]. Journal of Atmospheric Science,2007,64:3 766-3 784.
[39] Pavelin E G, English S J, Eyre J R. The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction[J].Quarterly Journal of the Royal Meteorological Society,2008,134(632):737-749.
[40] Marshall J L, Jung J, Goldberg M, et al. Using cloudy AIRS fields of view in numerical weather prediction[J]. Australian Meteorological Magazine,2008,57(3):249-254.
[41] Dong C, Yang J, Zhang W,et al.An overview of a new chinese weather satellite FY-3A[J].Bulletin of the American Meteorological Society,2009, 90: 1 531-1 544.

[1] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[2] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[3] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[4] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[5] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[6] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[7] 居为民, 方红亮, 田向军, 江飞, 占文凤, 刘洋, 王正兴, 何剑锋, 王绍强, 彭书时, 张永光, 周艳莲, 贾炳浩, 杨东旭, 符瑜, 李荣, 柳竟先, 王海鲲, 李贵才, 陈卓奇. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展, 2016, 31(11): 1105-1110.
[8] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[9] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[10] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[11] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[12] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[13] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[14] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[15] 黄磊, 李震, 周建民, 田帮森. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9): 985-994.