地球科学进展 ›› 2005, Vol. 20 ›› Issue (8): 903 -909. doi: 10.11867/j.issn.1001-8166.2005.08.0903

生态学研究 上一篇    下一篇

全球变化下土壤功能演变的响应和反馈
孙波,解宪丽   
  1. 中国科学院南京土壤研究所,中国生态系统研究网络土壤分中心,江苏 南京 210008
  • 收稿日期:2004-10-08 修回日期:2005-04-05 出版日期:2005-08-25
  • 通讯作者: 孙波
  • 基金资助:

    国家重点基础研究发展规划项目“我国农田生态系统重要过程与调控对策研究”(编号:2005CB121108)资助.

RESPONSE AND FEEDBACK OF SOIL FUNCTION EVOLVEMENT TO GLOBAL CHANGE

SUN Bo; XIE Xianli   

  1. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
  • Received:2004-10-08 Revised:2005-04-05 Online:2005-08-25 Published:2005-08-25

土壤过程是陆地生态系统过程的重要组成部分,对全球变化有响应和反馈作用。概述了国内外全球变化下的土壤功能演变过程的研究进展。样带的生态学对比结合长期试验的联网研究成为区域尺度的重要研究方法,同时广泛应用稳定性碳氮同位素分析和区域模型方法,对土壤碳氮循环的人文和自然元素综合驱动进行定量研究。未来对全球变化下土壤过程的研究重点是集成社会经济和生物物理过程的研究,加强土地利用变化驱动的定量描述,综合研究土壤碳氮循环和水循环交互作用,建立区域尺度的土壤碳氮循环模型,预测全球变化下土壤功能的演变和反馈,提出调控策略和措施。

Soil process is one of the key processes of terrestrial ecosystem, which responds and feeds back to the global change. This paper reviews the latest achievements of the studies on soil functions and processes under global change. The transect researches combined with network of long-term experiments become important methods at regional scale. Besides, stable C and N isotope analysis and model methods are widely applied to quantify the effect of anthropic and natural factors on soil C and N cycling. The future research on soil process under global change will focus on integrating the studies of social-economical and bio-physical processes, quantifying the driving mechanism of land-use and land cover change, studying the interaction between soil C and N cycling and water cycling, building C and N models at regional scale, predicting the change of soil function and the feedback effect on climate change and finally putting forward the strategies and measures to manage the soil function under global change.

中图分类号: 

[1]Smith P, Powlson D S. Considering manure and carbon sequestration [J]. Science, 2000, 287: 428-429.
[2]Mosier A R. Soil processes and global change [J].  Biology Fertility Soils,1998, 27: 221-229.
[3]Zhao Qiguo, Sun Bo, Zhang Taolin. Soil quality and sustainable environments I. The definition and evaluation methods of soil quality [J]. Soils, 1997, 29(3): 113-120. [赵其国, 孙波, 张桃林. 土壤质量与持续环境I.土壤质量的定义及评价方法 [J].土壤, 1997, 29(3): 113-120.]
[4]Arnold R W, Szabolcs I, Targulian V O. Global Soil Change [M]. Laxemburg, Australia: IIASA, 1990.
[5]Hobbie J E. Scientific accomplishment of the long term ecological research program: An introduction [J]. BioScience, 2003, 53(1):17-20.
[6]Koch G W, Scholes R J, Steffen W L, et al. The IGBP Terrestrial Transects: Science Plan [R]. IGBP Reports No. 36. Stockholm: IGBP, 1995.
[7]Sarah P. Soil sodium and potassium adsorption ratio along a mediterranean arid transect [J]. Journal of Arid Environments, 2004, 59: 731-741.
[8]Ibekwe A M, Kennedy A C, Frohne P S. Microbial diversity along a transect of agronomic zones [J]. FEMS Microbiology Ecology, 2002, 39: 183-191.
[9]Zhang Weijian, Xu Quan, Wang Xukui, et al. Impacts of emperimentai atmospheric warming on soil microbial community structure in a tallgrass prairie [J]. Acta Ecologica Sinica, 2004, 24(8): 1 742-1 747.  [张卫建, 许泉, 王绪奎, 等.气温上升对草地土壤微生物群落结构的影响 [J]. 生态学报, 2004, 24(8):1 742-1 747.]
[10]Susan Ringrose, Wilma Matheson, Cornelis Vanderpost, et al. Analysis of soil organic carbon and vegetation cover trends along the Botswana Kalahari Transect [J]. Journal of Arid Environments, 1998, 38: 379-396.
[11]Woomer P L, Toure A, Sall M. Carbon stocks in Senegal's Sahel Transition Zone [J]. Journal of Arid Environments, 2004, 59: 499-510.
[12]Rasmussen P E, Goulding K W T, Brown J R, et al. Long-term agroecosystem experiments: Assessing agricultural sustainability and global change [J]. Science, 1998, 82: 893-896.
[13]Powlson D S, Poulton P R. Long-term experiments in the 21st century continuity or change? [A]. In: Proceedings of Nordic Association of Agricultural Scientists 22nd Congress [C].Turku, Finland, 2003.
[14]Zhao F J, Knights J S, Hu Z Y, et al. Stable sulfur isotope ratio indicates long-term changes in sulfur deposition in the Broadbalk experiment since 1845 [J].  Journal of Environmental Quality, 2003,  32: 33-39.
[15]Peng S, Huang J, Sheehy J E, et al. Rice yields decline with higher nighttime temperature from global warming [J]. Proceedings of the National Academy of Sciences, 2004, 101(27):9 971-9 975.
[16]Yadvinder-Singh, Bijay-Singh, Ladha J K, et al. Long-term effects of organic inputs on yield and soil fertility in the rice-wheat rotation [J]. Soil Science Society of America Journal, 2004,68(3): 845-853.
[17]LTER Program 20-Years Review Committee. Long-term Ecological Research Program Twenty-Years Review [R]. National Science Foundation, USL TER Network Office, 2002. 
[18]Paul E A, Morris S J, Six J, et al. Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils [J]. Soil Science Society of America Journal, 2003, 67: 1 620-1 628.
[19]Paustian K, Babcock B A, Hatfield J, et al. Climate Change and Greenhouse Gas Mitigation: Challenges and Opportunities for Agriculture [R]. Council for Agricultural Science and Technology (CAST), Ames, Iowa, USA,2004.1-120.
[20]Smith P, Falloon P, Smith J U, et al. Soil Organic Matter Network (SOMNET): 2001 Model and Experimental Metadata [R]. GCTE Report no 7, second edition, GCTE Focus 3 Office, Wallingford, UK,2001.
[21]Smith P, Goulding K W, Smith K A, et al. Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential [J]. Nutrient Cycling in Agroecosystems, 2001, 60:237-252.
[22]Batjes N H. Carbon and nitrogen stocks in the soils of Central and Eastern Europe [J]. Soil Use and Management, 2002,18(4): 324-329.
[23]Bouwman A F, Boumans L J M, Batjes N H. Emissions of N2O and NO emissions from fertilized fieldssummary of available measurement data [J]. Global Biogeochemical Cycles, 2002, 16(4): 6-1 to 6-13.
[24]Field C B, Raupach M R. The Global Carbon Cycle  [M]. Washington DC, USA:Island Press,2004.
[25]Steffen W, Nobel I, Canadell J, et al. The terrestrial carbon cycle: Implication for the Kyoto protocol  [J]. Science, 1998, 280: 1 393-1 394.
[26]Guo L B, Gifford R M. Soil carbon sequestration and land-use change: A meta analysis  [J]. Global Change Biology, 2002, 8: 345-360.
[27]Trumbore S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics  [J]. Ecological Application, 2000, 10(2): 399-411.
[28]Wang Y, Hsieh Y. Uncertainties and novel prospects in the study of the soil carbon dynamics  [J]. Chemosphere, 2002, 49: 791-804.
[29]Scholes R J, Noble I N. Storing carbon on land  [J]. Science, 2001, 294: 1 012-1 013.
[30]Peng Shaolin,Li Yuelin,Ren Hai, et al. Progress in research on soil respiration under the global change  [J]. Advances in Earth Science, 2002,17(5):705-713.  [彭少麟, 李跃林, 任海,等.全球变化条件下的土壤呼吸效应  [J]. 地球科学进展, 2002,17(5):705-713.]
[31]Gruenzweig J M, Sparrow S D, Chapin III F S. Impact of agricultural land-use change on carbon storage in boreal Alaska [J].Global Change Biology,2004, 10(4): 452-472. 
[32]Sanchez J E, Harwood R R, Willson T C, et al. Integrated agricultural systems: Managing soil carbon and nitrogen for productivity and environmental quality  [J]. Agronomy Journal,  2004, 96: 769-775.
[33]Del Galdo I, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes  [J]. Global Change Biology, 2003,9:1 204-1 213.
[34]Leavitt S W, Pendall E, Paul E A, et al. Stable-carbon isotopes and soil organic carbon in wheat under CO2  enrichment  [J]. New Phytologist, 2001, 150: 305-314.
[35]Bird M I, Santr ckov  H, Lloyd J, et al. The isotopic composition of soil organic carbon on a north-south transect in western Canada  [J]. European Journal of Soil Science, 2002, 53: 393-403.
[36]Bird M I, Veenendaal E M, Lloyd J J. Soil carbon inventories and δ13C along a moisture gradient in Botswana  [J]. Global Change Biology, 2004, 10: 342-349.
[37]Aranibar J N, Otter L, Macko S A, et al. Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands [J].  Global Change Biology, 2004, 10(3): 359-373. 
[38]Buchmann N, Kaplan J O. Carbon isotope discrimination of terrestrial ecosystems how well do observed and modeled results match? [A]. In: Schulze S P, et al, eds. Global Biogeochemical Cycles in Climate System  [C]. San Diego: Academic Press, 1999. 253-266. 
[39]Molina J A E, Smith P. Modeling carbon and nitrogen processes in soil [J]. Advances in Agronomy, 1997, 62: 253-298. 
[40]Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments [J].Geoderma, 1997, 81:153-225.
[41]Lal R Kimble J M, Follett R F, et al. Soil Processes and the Carbon Cycle [M].Boca Raton: CRC Press, 1997.
[42]Falloon P, Smith P, Smith J U, et al. Regional estimates of carbon sequestration potential: Linking the Rothamsted carbon model to GIS databases  [J]. Biology and Fertility of Soils,1998, 27:236-241.
[43]Falloon P, Smith P, Szab J , et al. Comparison of approaches for estimating carbon sequestration at the regional scale [J].  Soil Use and Management, 2002, 18:164-174.
[44]Zhang Xinshi, Yang Dian'an. Allocation and study on global change transects in China  [J]. Quaternary Sciences, 1995, (1): 43-52.  [张新时, 杨奠安. 中国全球变化样带的设置与研究  [J]. 第四纪研究,1995, (1): 43-52.]
[45]Peng Shaolin,Zhao Ping,Ren Hai, et al. The possible heat-driven pattern variation of zonal vegetation and agricultural ecosystem along the north-south transect of China under the global change  [J]. Earth Science Frontiers, 2002, 9(1): 217-226.  [彭少麟,赵平,任海,等.全球变化压力下中国东部样带植被与农业生态系统格局的可能性变化  [J]. 地学前缘, 2002, 9(1): 217-226.]
[46]周广胜,王玉辉,许振柱,等.中国东北样带碳循环研究进展 [J].自然科学进展, 2003, 13(9): 917-922.
[47]Wang Shuping, Zhou Guangsheng, Lü Yucai, et al. Distribution of soil carbon, nitrogen and phosphorus along northeast China transect (NECT) and their relations with climatic factors  [J]. Acta Phytoecologica Sinica, 2002, 26(5): 513-517.  [王淑平, 周广胜, 吕育财, 等. 中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其气候因子的关系 [J]. 植物生态学报, 2002, 26(5): 513-517.]
[48]Li Zong, Sun Bo, Zhao Qiguo. Density and storage of soil organic carbon in east China [J]. Agro-environmental Protection, 2001, 20(6): 385-389.  [李忠, 孙波, 赵其国. 我国东部土壤有机碳的密度和储量  [J]. 农业环境保护, 2001, 20(6): 385-389.]
[49]Li Zhongpei, Lin Xinxiong, Che Yuping. Analysis for the balance of organic carbon pools and their tendency in typical arable soils of eastern China [J].Acat Pedologica Sinica, 39(3):351-360. [李忠佩, 林心雄, 车玉萍. 中国东部主要农田土壤有机碳库的平衡与趋势分析 [J].  土壤学报, 39(3):351-360.]
[50]Su Bo, Han Xingguo, Li Linghao, et al. Reponses of 13C value and water use effieicency of plant species to environmental gradients along the grassland zone of northeast China transect  [J]. Acta Phytoecologica Sinica, 2000, 24(6): 648-655.  [苏波,韩兴国,李凌浩,等.中国东北样带草原区植物13C值及水分利用效率对环境梯度的响应  [J]. 植物生态学报, 2000, 24(6): 648-655.]
[51]Liu Qiming, Wang Shijie, Piao Hechun, et al. Soil organic matter changes of turnover ecosystems traced by stable carbon isotopes  [J]. Quaternary Sciences, 2001, 21(5): 461.  [刘启明, 王世杰, 朴河春, 等. 农林生态系统的转变对土壤有机质影响的13C示踪研究  [J]. 第四纪研究, 2001, 21(5): 461.] 
[52]Zheng Leping. Carbon stable isotopic composition of karst soil CO2 in central Guizhou, China [J]. Science in China(D), 1999, 29(6): 514-519.  [郑乐平. 黔中岩溶地区土壤CO2的稳定碳同位素组成研究 [J]. 中国科学D辑, 1999, 29(6): 514-519.]
[53]Shen Shanmin. Fertility of Chinese Soil  [M]. Beijing: China Agricultural Press, 1998.  [沈善敏.中国土壤肥力 [M]. 北京: 中国农业出版社, 1998.]
[54]Lin Bao, Lin Jixiong, Li Jiakang. The Changes of Crop Yield and Soil Fertility with Long-term Fertilizer Application  [M]. Beijing: China Agricultural Scientech Press, 1996.1-179.  [林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化 [M]. 北京: 中国农业科技出版社, 1996.1-179.]
[55]Yang Linzhang, Sun Bo, Liu Jian. Progress in translocation and transformation of nutrients in agroecosystems and its optimized management  [J].  Advances in Earth Science, 2002, 17(3): 441-445.  [杨林章,孙波,刘健. 农田生态系统养分迁移转化与优化管理研究  [J].  地球科学进展, 2002, 17(3): 441-445.]
[56]Yu Wantai,Zhang Lu,Yin Xiuyan, et al. Geographic differentiation of yield-increase efficiency caused by recycled nutrients in agro-ecosystems  [J]. Transactions of the CSAE, 2003, 19(6): 28-31.  [宇万太, 张璐, 殷秀岩, 等. 农业生态系统养分循环再利用作物产量增益的地理分异  [J]. 农业工程学报, 2003, 19(6): 28-31.]
[57]Zhang Lu,Shen Shanmin,Yu Wantai,et al.Long term trial on fertilization and on use of recycled nutrients in farming systems V. Response of crop yields to fertilization in different precipitation years and estimates of water and nutrient interaction  [J].Chinese Journal of Applied Ecology,2003,14(12)∶2 205-2 207.  [张璐,沈善敏,宇万太,等.辽西褐土施肥及养分循环再利用中长期试验V.不同降水年景作物产量对施肥的反应和水肥交互作用  [J].应用生态学报,2003,14(12):2  205-2 207.]
[58]Li Jing, Wang Mingxing, Wang Yuesi, et al. Advance of researches on greenhouse gases emission from Chinese agricultural ecosystem  [J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 740-749. [李晶, 王明星, 王跃思, 等. 农田生态系统温室气体排放研究进展  [J].  大气科学, 2003, 27(4): 740-749. ]
[59]Xu Zhongjun, Zheng Xunhua, Wang Yuesi, et al. Effects of elevated atmospheric CO2 on CH4 and N2O emissions from paddy fields [J].Chinese Journal of Applied Ecology,2002,13(10):1 245-1 248. [徐仲均, 郑循华, 王跃思, 等. 开放式空气CO2增高对稻田CH4和N2O 排放的影响  [J].应用生态学报, 2002, 13(10): 1 245-1 248.]
[60]Liang Wenju, Li Qi, Chen Lijie, et al. Effects of elevated atmospheric CO2 on nematodet trogroups in a Chinese paddy field ecosytem [J]. Chinese Journal of Applied Ecology, 2002,13(10):1 269-1 272.  [梁文举, 李琪, 陈立杰, 等. 开放式空气CO2浓度增高对中国稻田生态系统线虫营养类群产生的影响 [J]. 应用生态学报, 2002, 13(10): 1 269-1 272.]
[61]Huang Yao. Study on carbon budget in terrestrial and marginal sea ecosystems of China  [J]. Bulletin of Chinese Academy of Sciences, 2002, (2): 104-107.  [黄耀. 中国陆地和近海生态系统碳收支研究  [J]. 中国科学院院刊, 2002, (2): 104-107.]
[62]Li Changsheng, Xiao Xiangming, Frolking S, et al. Green house gas emissions from croplands of China  [J]. Quaternary Sciences, 2003, 23(5): 493-503.  [李长生, 肖向明, Frolking S,等.中国农田的温室气体排放  [J]. 第四纪研究, 2003, 23(5): 493-503.]
[63]Wu Jinshui,Tong Chengli,Liu Shoulong. Responses of soil organic carbon to global climate changes in cultivated soils in the subtropical and the loess plateau regions  [J]. Advances in Earth Science, 2004, 19(1): 131-137.  [吴金水, 童成立, 刘守龙. 亚热带和黄土高原区耕作土壤有机碳对全球气候变化的响应  [J]. 地球科学进展, 2004, 19(1): 131-137.]

[1] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[2] 刘文聪, 张春菊, 汪陈, 张雪英, 朱月琴, 焦守涛, 鲁艳旭. 基于 BiLSTM-CRF的中文地质时间信息抽取[J]. 地球科学进展, 2021, 36(2): 211-220.
[3] 陈科贵, 李进, 黄长兵, 陈愿愿, 王刚, 刘阳. BP神经网络在富钾卤水中的应用研究[J]. 地球科学进展, 2018, 33(6): 614-622.
[4] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[5] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[6] 赵燕慧, 路紫. 航线网络碳排放模型及外部性要素分析[J]. 地球科学进展, 2018, 33(1): 103-111.
[7] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[8] 白龙, 路紫, 杜欣儒, 郜方. 城市区域(超)低空空域无人机活动通道划设规则与方法[J]. 地球科学进展, 2016, 31(11): 1197-1204.
[9] 陈科贵, 陈旭, 张家浩. 复合渗透率测井评价方法在砂砾岩稠油油藏的应用 *——以克拉玛依油田某区八道湾组为例[J]. 地球科学进展, 2015, 30(7): 773-779.
[10] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[11] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[12] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[13] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[14] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[15] 曾溅辉, 杨智峰, 冯枭, 乔俊程, 张忠义. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651-661.
阅读次数
全文


摘要