地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1185

所属专题: 青藏高原研究——青藏科考虚拟专刊

973项目研究进展    下一篇

青藏高原重大冻土工程的基础研究
马 巍,牛富俊,穆彦虎   
  1. 冻土工程国家重点实验室,寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2012-07-16 修回日期:2012-10-21 出版日期:2012-11-10
  • 基金资助:

    国家重点基础研究发展计划项目“青藏高原重大冻土工程的基础研究”(编号:2012CB026100)资助.

Basic Research on the Major Permafrost Projects in the QinghaiTibet Plateau

Ma Wei, Niu Fujun, Mu Yanhu   

  1. State Key Laboratory of Frozen Soils Engineering, Cold and Arid Environmental and Engineering Research Institute, Chinese Academy of SciencesLanzhou, 730000, China
  • Received:2012-07-16 Revised:2012-10-21 Online:2012-11-10 Published:2012-11-10

青藏高原是我国乃至世界高海拔多年冻土区的典型代表。伴随着青藏铁路的建成通车,西藏自治区迎来了新一轮经济发展,迫切需要新建高速公路、输变电线路、输油气管道工程等。这些拟建工程与已建的青藏公路、青藏铁路、格拉输油管道、兰西拉光缆等工程均聚集于宽度不足10 km范围内的青藏工程走廊。在这狭长的冻土工程走廊内,已修建或拟建的各种冻土构筑物相互影响,多因素耦合叠加,加速区域内的冻土退化,而冻土融化必将影响到工程的稳定性和生态环境退化。再加上全球气候变化的影响,其变化程度更加剧烈。面对国家需求,国家重点基础研究发展项目“青藏高原重大冻土工程的基础研究”于2012年4月正式启动。该项目旨在揭示气候变化与人类工程活动加剧背景下冻土变化及灾害时空演化规律,建立冻土工程稳定性和服役性能评价体系,提出冻土工程灾害防治理论与控制对策,为冻土构筑物群灾害应急预案和重大冻土工程建设提供科学决策依据。

QinghaiTibet Plateau is representative highaltitude permafrost region on the earth. Along with the operation of Qinghai-Tibet Railway, a new round of economic development in Xizang (Tibet) Autonomous Region has emerged, which need construction of highway, power transmission line and oil/gas pipeline. These proposed projects and already existed projects, including QinghaiTibet Railway, Qinghai-Tibet Highway, Golmud-Lhasa oil product pipeline, and optical cable from Lanzhou to Lhasa, are all located in the QinghaiTibet engineering corridor, which is not wide than 10 km. In this corridor, influences between proposed and existed projects and coupling of multifactors will accelerate the permafrost degradation, and consequently undermine the stability of these projects and ecological environment, especially along with climate change. To meet the national needs, “Basic Research on the Major Permafrost Projects in the Qinghai-Tibet Plateau”, a project of National Basic Research Program of China, was initiated in April, 2012. The aim of this project is to reveal the spacetime revolution of permafrost and permafrostrelated hazards under the scenarios of climate change and intensive engineering activity, construct an evaluation system on stability and service ability of permafrost engineering, and propose a preventative theory and control measures on permafrost engineering hazard, and finally provide scientific guidelines on prearranging plan on permafrost engineering hazard and on construction of major permafrost engineering in the future.

中图分类号: 

[1]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Frozen Ground in China[M]. Beijing: Science Press, 2000.[周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M].北京: 科学出版社, 2000.]

[2]Ding Yihui. The Comprehensive Evaluating Report on the Environment Evolvement in West China, Vol (2)[M]. Beijing: Science Press, 2002:38-44.[丁一汇. 中国西部环境变化的预测中国西部环境演变评估(第二卷)[M]. 北京: 科学出版社, 2002: 38-44.]

[3]Qing Dahe, Ding Yihui, Wang Shaowu, et al. A study of environment change and its impact in western China[J]. Earth Science Frontiers, 2002, 9(2): 321-328.[秦大河, 丁一汇, 王绍武, 等.中国西部环境演变及其影响研究[J].地学前缘, 2002, 9(2): 321-328.]

[4]Zhu Linnan, Wu Ziwang, Liu Yongzhi, et al. Effect of permafrost degeneration on environment in the east of Qinghai-Xizang Plateau[J]. Marine Geology & Quaternary Geology, 1995, 15(3): 129-135.[朱林楠, 吴紫汪, 刘永智, 等. 青藏高原东部多年冻土退化对环境的影响[J]. 海洋地质与第四纪地质, 1995, 15(3): 129-135.]

[5]Wang Shaoling, Zhao Xiufeng, Guo Dongxin, et al. Response of permafrost to climate change in the Qinghai-Xizang Plateau[J].Journal of Glaciology and Geocryology, 1996, 18(Suppl.):157-165.[王绍令, 赵秀峰, 郭东信, 等. 青藏高原冻土对气候变化的响应[J]. 冰川冻土, 1996, 18(增刊):157-165.]

[6]Wu Qingbai, Zhu Yuanlin, Liu Yongzhi. Evaluating model of frozen soil environment change under engineering actions[J]. China Science (Series D), 2002, 45(10):893-902.[吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学:D辑, 2002, 32(2):142-147.]

[7]Li Xin. The Cryospheric Information System and Its Applications[D]. Lanzhou: Cold and Arid   Environmental and Engineering Research Institute, CAS,1998.[李新. 冰冻圈信息系统及其应用研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 1998.]

[8]Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost changes on Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China (Series D), 2004, 34(6): 528-534.[南卓铜, 李述训, 程国栋. 未来50a与100a青藏高原多年冻土变化情景预测[J]. 中国科学:D辑, 2004, 34(6): 528-534.]

[9]He Ruixia, Jin Huijun, Chang Xiaoli, et al. Environmental effect on Golmud-Lhasa oil product pipeline[J]. Oil & Gas Storage and Transportation,2009, 28(9): 75-78.[何瑞霞, 金会军, 常晓丽, 等. 格拉管道环境变化与管道工程问题的防治措施[J]. 油气储运, 2009, 28(9): 75-78.]

[10]Cheng Guodong. Interaction between Qinghai-Tibet railway engineering and permafrost and environmental effects[J]. Bulletin of Chinese Academy of Sciences, 2002, 1:21-25.[程国栋. 青藏铁路工程与多年冻土相互作用及环境效应[J]. 中国科学院院刊, 2002, 1: 21-25.]

[11]Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3):250-255.[吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.]

[12]Guo Zhenggang, Niu Fujun, Zhan Hu, et al. Changes of grassland ecosystem due to degradation of permafrost frozen soil in the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2007, 27(8):3 294-3 301.[郭正刚, 牛富俊, 湛虎, 等.青藏高原北部多年冻土退化过程中生态系统的变化特征[J]. 生态学报, 2007, 27(8): 3 294-3 301.]

[13]Wang Genxu, Hu Hongchang, Wang Yibo, et al.  Response of alpine cold ecosystem biomass to climate changes in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2007, 29(5):671-679.[王根绪, 胡宏昌, 王一博, 等. 青藏高原多年冻土区典型高寒草地生物量对气候变化的响应[J]. 冰川冻土, 2007, 29(5): 671-679. ]

[14]Cheng Guodong. Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design[J]. Science in China(Series D), 2003, 47(8): 704-709.[程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J]. 中国科学:D辑, 2003, 33(6): 602-607.]

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[4] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[5] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[6] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[7] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[8] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[9] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[10] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[11] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[12] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[13] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[14] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[15] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
阅读次数
全文


摘要