Please wait a minute...
img img
高级检索
地球科学进展
973项目研究进展     
青藏高原重大冻土工程的基础研究
马 巍,牛富俊,穆彦虎
冻土工程国家重点实验室,寒区旱区环境与工程研究所,甘肃 兰州 730000
Basic Research on the Major Permafrost Projects in the QinghaiTibet Plateau
Ma Wei, Niu Fujun, Mu Yanhu
State Key Laboratory of Frozen Soils Engineering, Cold and Arid Environmental and Engineering Research Institute, Chinese Academy of SciencesLanzhou, 730000, China
 全文: PDF(1127 KB)  
摘要:

青藏高原是我国乃至世界高海拔多年冻土区的典型代表。伴随着青藏铁路的建成通车,西藏自治区迎来了新一轮经济发展,迫切需要新建高速公路、输变电线路、输油气管道工程等。这些拟建工程与已建的青藏公路、青藏铁路、格拉输油管道、兰西拉光缆等工程均聚集于宽度不足10 km范围内的青藏工程走廊。在这狭长的冻土工程走廊内,已修建或拟建的各种冻土构筑物相互影响,多因素耦合叠加,加速区域内的冻土退化,而冻土融化必将影响到工程的稳定性和生态环境退化。再加上全球气候变化的影响,其变化程度更加剧烈。面对国家需求,国家重点基础研究发展项目“青藏高原重大冻土工程的基础研究”于2012年4月正式启动。该项目旨在揭示气候变化与人类工程活动加剧背景下冻土变化及灾害时空演化规律,建立冻土工程稳定性和服役性能评价体系,提出冻土工程灾害防治理论与控制对策,为冻土构筑物群灾害应急预案和重大冻土工程建设提供科学决策依据。

关键词: 青藏高原冻土工程气候变化冻土变化稳定性及服役性能工程灾害    
Abstract:

QinghaiTibet Plateau is representative highaltitude permafrost region on the earth. Along with the operation of Qinghai-Tibet Railway, a new round of economic development in Xizang (Tibet) Autonomous Region has emerged, which need construction of highway, power transmission line and oil/gas pipeline. These proposed projects and already existed projects, including QinghaiTibet Railway, Qinghai-Tibet Highway, Golmud-Lhasa oil product pipeline, and optical cable from Lanzhou to Lhasa, are all located in the QinghaiTibet engineering corridor, which is not wide than 10 km. In this corridor, influences between proposed and existed projects and coupling of multifactors will accelerate the permafrost degradation, and consequently undermine the stability of these projects and ecological environment, especially along with climate change. To meet the national needs, “Basic Research on the Major Permafrost Projects in the Qinghai-Tibet Plateau”, a project of National Basic Research Program of China, was initiated in April, 2012. The aim of this project is to reveal the spacetime revolution of permafrost and permafrostrelated hazards under the scenarios of climate change and intensive engineering activity, construct an evaluation system on stability and service ability of permafrost engineering, and propose a preventative theory and control measures on permafrost engineering hazard, and finally provide scientific guidelines on prearranging plan on permafrost engineering hazard and on construction of major permafrost engineering in the future.

收稿日期: 2012-07-16 出版日期: 2012-11-10
:  P71  
基金资助:

国家重点基础研究发展计划项目“青藏高原重大冻土工程的基础研究”(编号:2012CB026100)资助.

作者简介: 马巍(1963-),男,甘肃天水人,研究员,主要从事寒区岩土工程及环境研究.E-mail:mawei@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马巍
牛富俊
穆彦虎

引用本文:

马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 10.11867/j.issn.1001-8166.2012.11.1185.

Ma Wei, Niu Fujun, Mu Yanhu. Basic Research on the Major Permafrost Projects in the QinghaiTibet Plateau. Advances in Earth Science, 10.11867/j.issn.1001-8166.2012.11.1185.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.11.1185        http://www.adearth.ac.cn/CN/Y2012/V27/I11/1185

[1]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Frozen Ground in China[M]. Beijing: Science Press, 2000.[周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M].北京: 科学出版社, 2000.]

[2]Ding Yihui. The Comprehensive Evaluating Report on the Environment Evolvement in West China, Vol (2)[M]. Beijing: Science Press, 2002:38-44.[丁一汇. 中国西部环境变化的预测中国西部环境演变评估(第二卷)[M]. 北京: 科学出版社, 2002: 38-44.]

[3]Qing Dahe, Ding Yihui, Wang Shaowu, et al. A study of environment change and its impact in western China[J]. Earth Science Frontiers, 2002, 9(2): 321-328.[秦大河, 丁一汇, 王绍武, 等.中国西部环境演变及其影响研究[J].地学前缘, 2002, 9(2): 321-328.]

[4]Zhu Linnan, Wu Ziwang, Liu Yongzhi, et al. Effect of permafrost degeneration on environment in the east of Qinghai-Xizang Plateau[J]. Marine Geology & Quaternary Geology, 1995, 15(3): 129-135.[朱林楠, 吴紫汪, 刘永智, 等. 青藏高原东部多年冻土退化对环境的影响[J]. 海洋地质与第四纪地质, 1995, 15(3): 129-135.]

[5]Wang Shaoling, Zhao Xiufeng, Guo Dongxin, et al. Response of permafrost to climate change in the Qinghai-Xizang Plateau[J].Journal of Glaciology and Geocryology, 1996, 18(Suppl.):157-165.[王绍令, 赵秀峰, 郭东信, 等. 青藏高原冻土对气候变化的响应[J]. 冰川冻土, 1996, 18(增刊):157-165.]

[6]Wu Qingbai, Zhu Yuanlin, Liu Yongzhi. Evaluating model of frozen soil environment change under engineering actions[J]. China Science (Series D), 2002, 45(10):893-902.[吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学:D辑, 2002, 32(2):142-147.]

[7]Li Xin. The Cryospheric Information System and Its Applications[D]. Lanzhou: Cold and Arid   Environmental and Engineering Research Institute, CAS,1998.[李新. 冰冻圈信息系统及其应用研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 1998.]

[8]Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost changes on Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China (Series D), 2004, 34(6): 528-534.[南卓铜, 李述训, 程国栋. 未来50a与100a青藏高原多年冻土变化情景预测[J]. 中国科学:D辑, 2004, 34(6): 528-534.]

[9]He Ruixia, Jin Huijun, Chang Xiaoli, et al. Environmental effect on Golmud-Lhasa oil product pipeline[J]. Oil & Gas Storage and Transportation,2009, 28(9): 75-78.[何瑞霞, 金会军, 常晓丽, 等. 格拉管道环境变化与管道工程问题的防治措施[J]. 油气储运, 2009, 28(9): 75-78.]

[10]Cheng Guodong. Interaction between Qinghai-Tibet railway engineering and permafrost and environmental effects[J]. Bulletin of Chinese Academy of Sciences, 2002, 1:21-25.[程国栋. 青藏铁路工程与多年冻土相互作用及环境效应[J]. 中国科学院院刊, 2002, 1: 21-25.]

[11]Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3):250-255.[吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.]

[12]Guo Zhenggang, Niu Fujun, Zhan Hu, et al. Changes of grassland ecosystem due to degradation of permafrost frozen soil in the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2007, 27(8):3 294-3 301.[郭正刚, 牛富俊, 湛虎, 等.青藏高原北部多年冻土退化过程中生态系统的变化特征[J]. 生态学报, 2007, 27(8): 3 294-3 301.]

[13]Wang Genxu, Hu Hongchang, Wang Yibo, et al.  Response of alpine cold ecosystem biomass to climate changes in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2007, 29(5):671-679.[王根绪, 胡宏昌, 王一博, 等. 青藏高原多年冻土区典型高寒草地生物量对气候变化的响应[J]. 冰川冻土, 2007, 29(5): 671-679. ]

[14]Cheng Guodong. Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design[J]. Science in China(Series D), 2003, 47(8): 704-709.[程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J]. 中国科学:D辑, 2003, 33(6): 602-607.]

[1] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[2] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[3] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[4] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[5] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[6] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[7] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[8] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[9] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[12] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[13] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[14] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[15] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.