地球科学进展 ›› 2007, Vol. 22 ›› Issue (9): 914 -921. doi: 10.11867/j.issn.1001-8166.2007.09.0914

所属专题: IODP研究

IODP研究 上一篇    下一篇

南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义
金海燕,翦知湣   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2007-08-04 修回日期:2007-08-20 出版日期:2007-09-15
  • 通讯作者: 金海燕(1978-),女,浙江杭州人,博士研究生,主要从事古海洋学研究.E-mail:jinyujojo@126.com E-mail:jinyujojo@126.com
  • 基金资助:

    国家自然科学基金创新研究群体项目“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号:40621063);国家自然科学基金重点项目“南海中更新世气候转型期千年尺度气候波动及其全球意义”(编号:40331002);国家重点基础研究发展计划项目“低纬海洋气候变化的特殊性”(编号:2007CB815901);国家高技术研究发展计划项目“大洋钻探技术预研究”(编号:2004AA615030)联合资助.

Paleoclimatic Instability During the MidPleistocene Transition: Implications from Foraminiferal Stable Isotope at ODP Site1144 ,Northern South China Sea

JIN Hai-yan,JIAN Zhi-min   

  1. State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China
  • Received:2007-08-04 Revised:2007-08-20 Online:2007-09-15 Published:2007-09-10

中更新世气候转型期是第四纪古气候研究的一个特殊时期。利用大洋钻探ODP 184航次在南海北部钻取的1144站时间分辨率高达约290年的沉积物样品,开展中更新世气候转型期古气候变化的研究。在中更新世距今80~100万年前,浮游和底栖有孔虫壳体的稳定氧碳同位素变化揭示出,中更新世气候转型中心,即中更新世革命0.9 Ma左右,南海北部表层海水温度的降低和降水量的增加指示东亚冬、夏季风增强。以中更新世革命为界,水体垂向结构上温跃层和营养跃层的深度从之前的间冰期较浅转变为之后的间冰期较深,底层水与表层水的垂直温度梯度从冰期时较大转变为冰期时较小。轨道尺度上,冰消期时南海北部的表层水、次表层水和底层水的变化几乎是同时发生的,不存在超前或滞后的相位差。千年尺度上,有孔虫的氧碳同位素变化都呈现出非常明显的约0.8 ka和约1.4 ka的气候波动周期。氧同位素0.8 ka滤波显示出:在中更新世气候转型期,较强的信号主要出现在间冰期,有时也出现在冰期,与晚第四纪千年尺度气候波动主要出现在冰期不同,说明中更新世的气候转型不仅表现在轨道尺度的气候周期变化上,同时也体现在千年尺度气候波动的特征变化中。

The midPleistocene climate transition (MPT) is a period in geologic history marked by a gradual change in climate periodicity from 40 ka to 100 ka at approximately 0.9 Ma BP, around the marine isotope stages (MIS) 22/23 boundary. Here we present a high resolution record (~290 a sampling interval) of foraminiferal stable isotopes during 0.8~1.0 Ma at this site. Our data indicated that the Asian monsoon strengthened after the MPT, resulting a deepened thermocline. The depth of the thermocline (DOT) and the nutrientcline were found to be deeper during the glacials than in interglacials before the MPR. After the MPR, the DOT and the nutrientcline became deeper in interglacials than in glacial periods. On the orbital time scale, the surface water change synchronized with the bottom water change. However, on the millennial time scale, spectral analysis of foraminiferal oxygen and carbon isotope data revealed dominant periodicities at ~0.8 ka and ~1.4 ka, indicating the climatic instability during the MPT. Furthermore, the amplitude changes of the millennialscale climate instability were amplified after 0.9 Ma. Most of the strong cyclic signals occurred during the interglacials during the MPT, which is different from the millennial climatic instability during the later Pleistocene. Therefore, our isotopic results confirm the previous conclusion of color reflectance (CR) analysis at this site.

中图分类号: 

[1]Berger W H,Labeyrie L D. Abrupt climate change—An introduction[C]//Berger W H,Labeyrie L D,eds. Abrupt Climate Change-Evidence and Implications. Dordrecht:Reidel,1987:3-22.
[2]Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years[J]. Quaternary Research,1988,29:143-152.
[3]Broecker W S,Bond G C,Klas M,et al. Origin of the northern Atlantic’s Heinrich events[J].Climate Dynaics,1992,6:265-273.
[4]Dansgaard W,Johnsen S J,Clausen H B,et al. Evidence for general instability of past climate from 1 250 ka ice-core record[J].Nature,1993,364:218-220.
[5]Bond G,Lotti R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation[J].Science,1995,267:1 005-1 010.
[6]Oppo D W,McManus J F,Cullen J L. Abrupt climate events 500 000  to 340 000 years ago:Evience from subpolar North Atlantic sediments[J].Science,1998,279:1 335-1 338.
[7]Raymo M E,Ganley K,Carter S,et al. Millennial-scale climate instability during the early Pleistocene epoch[J].Nature,1998,392:699-702.
[8]McManus J F,Oppo D W,Cullen J L. A 0.5 million year record of millennial-scale climate variability in the North Atlantic[J].Science,1999,283:971-975.
[9]Helmke J P,Schulz M,Bauch H A. Sediment-color record from the northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500 000 years[J].Quaternary Research,2002,57:49-57.
[10]Huang Wei,Jian Zhimin,Bühring C.The millennial scale climate fluctuations revealed by the records of color reflectance from ODP Site 1144 in the northern South China Sea[J].Marine Geology and Quaternary Geology,2003,23(3):5-10. [黄维,翦知湣,Bühring C.南海北部ODP1144孔颜色反射率所揭示的千年尺度气候波动[J]. 海洋地质与第四纪地质,2003,23(3):5-10.]
[11]Bühring C,Sarnthein M,Erlenkeuser H. Toward a high-resolution stable isotope stratigraphy of the last 1.1 M.Y.:Site 1144,South China Sea[C]//Prell W L,Wang P X,Blum P,eds. Proceedings of the Ocean Drilling Program Scientific Results.2004,184:1-29.
[12]Shackleton N J,Hall N J,Pate D. Pliocene stable isotope stratigraphy of site 846[C]//Pisias N G,Mayer L A,Janecek T R,eds. Proceedings of the Ocean Drilling Program Scientific Results,1995,138:337-355.
[13]Tiedemann R,Sarnthein M,Shackleton N J. Astronomic timescale for the Pliocene Atlantic 18O and dust flux records from Ocean Drilling Program Site 659[J]. Paleoceanography,1994,9:619-638.
[14]Lear C H,Elderfield H,Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite[J].Science,2000,287:269-272.
[15]Billups K,Schrag D P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera[J].Paleoceanograpy, 2002,17:(3-1)-(3-11).
[16]Shackleton N J,Berger A,Peltier W R. An alternative calibration of the lower Pleistocene timescale based on ODP site 677. Transaction of the Royal Society Edinburg[J].Earth Sciences,1990,81:251-261.
[17]Berger W H,Jansen E. Mid-Pleistocene climate shift—The Nansen connection[J].Geophysical Monograph,1994,84:295-311.
[18]Jian Z M,Wang P X,Chen M P,et al. Foraminiferal response to major Pleistocene paleoceanographic changes in the southern South China Sea[J].Paleoceanography,2000,15(2):229-243.
[19]Zheng F,Li Q Y,Li B H,et al. A millennial scale planktonic foraminifer record of the mid-Pleistocene climate transition from the northern South China Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2005,223:349-363.
[20]Schulz M,Mudelsee M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J].Computer & Geoscience,2002,28:421-426.
[21]Wang L J,Sarnthein M,Erlenkeuser H,et al. Holocene variations in Asian monsoon moisture:A bidecadal sediment record from the South China Sea[J]. Geophysical Research Letters,1999,26(18):2 889-2 892.

[1] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[2] 高金耀,吴招才,王健,杨春国,张涛. 南海北部陆缘磁静区及与全球大洋磁静区对比的研究评述[J]. 地球科学进展, 2009, 24(6): 577-588.
[3] 周蒂,孙珍,陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572.
[4] 何家雄,施小斌,夏斌,刘海龄,阎贫,姚永坚,张树林. 南海北部边缘盆地油气勘探现状与深水油气资源前景[J]. 地球科学进展, 2007, 22(3): 261-270.
[5] 陈纪新,黄邦钦,刘媛,曹振锐,洪华生. 应用特征光合色素研究东海和南海北部浮游植物的群落结构[J]. 地球科学进展, 2006, 21(7): 738-746.
[6] 郭朴,方文东,于红兵. 近海陆架区内潮观测研究进展[J]. 地球科学进展, 2006, 21(6): 617-624.
[7] 邬光剑,潘保田,管清玉,高红山. 中更新世气候转型与100ka周期研究[J]. 地球科学进展, 2002, 17(4): 605-612.
阅读次数
全文


摘要