地球科学进展 ›› 2007, Vol. 22 ›› Issue (9): 922 -930. doi: 10.11867/j.issn.1001-8166.2007.09.0922

研究论文 上一篇    下一篇

同位素指示的巴丹吉林沙漠南缘地下水补给来源
马金珠 1,黄天明 1,丁贞玉 1,W.M. Edmunds 2   
  1. 1.兰州大学西部环境教育部重点实验室,甘肃 兰州 730000;2. Oxford Centre for Water Research, Oxford University, Oxford,OX1 3QY,UK
  • 收稿日期:2007-04-30 修回日期:2007-07-05 出版日期:2007-09-15
  • 通讯作者: 马金珠(1968-), 男,甘肃静宁人,教授,主要从事干旱区水资源与水环境研究.E-mail:jzma@lzu.edu.cn E-mail:jzma@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目“民勤盆地及腾格里沙漠地下水补给循环与古气候环境记录研究”(编号:40671029);教育部新世纪优秀人才支持计划项目资助.

Environmental Isotopes as the Indicators of the Groundwater Recharge in the South Badain Jaran Desert

MA Jin-zhu 1, HUANG Tian-ming 1, DING Zhen-yu 1, W.M.Edmunds 2   

  1. 1.Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China; 2.Oxford Centre for Water Research, Oxford University, Oxford,OX1 3QY, UK
  • Received:2007-04-30 Revised:2007-07-05 Online:2007-09-15 Published:2007-09-10

通过恢复巴丹吉林沙漠及其周边地区大气降水氚值,并结合区域稳定同位素组合特征,揭示了区域地下水氚年龄的多解性与地下水稳定同位素的温度效应。恢复的1963年核试验期氚高峰值达到2 100 TU,进入90年代平均为60 TU。1960年以来降水补给的地下水氚值都应大于15 TU,而1963年的高峰氚衰变至今应在200 TU左右。地下水实测氚值较低,表明由现代少量降水补给的地下水与大量的古水进行了混合。影响降水中δ18O和δ2H分布的主要影响因子是月平均空气温度,对δ18O与δ2H的影响权重分别占到59.9%和57.0%。巴丹吉林沙漠及其周边地区地下水较低的稳定同位素组成表明,其补给主要是晚更新世较冷环境下形成的,来源于东南部的雅布赖山区,部分浅层地下水接受现代降水与河流的补给。 

The reconstructed maximum tritium peak was reached 2 100 TU in 1963 in the Badain Jaran area,which is lower than the tritium peak value of 3 280 TU in Vienna, but quite higher than the average tritium value of 600 TU in HongKong. The reconstructed 3H value was about 110~150 TU during the 1970s and reduced to 60 TU during the 1990s. The very low tritium value in the groundwater shows that little modern rainfall recharged groundwater was mixed by more palaeowater, which indicates age determinations accurate to the year are impossible and a tritium value in the groundwater means multiple recharge ages in this region. The temperature is the primary factor effect to δ18O and δ2H in precipitation and their value is 59.9% and 57.0% respectively. The isotopic composition of the lakes and the shallow groundwaters feeding the lakes are interrelated along a line that intercepts the local meteoric line at around -11.4‰  δ18O . This implies that the groundwaters are genetically recharged from a time when the climate was much colder and wetter than today during the later Pleistocene. The source must be palaeowater from the Southeast Yabulai Mountain. However, the shallow groundwater partly recharged with minimum rainfall.

中图分类号: 

[1]Chen Jiansheng, Li Ling, Wang Jiyang, et al. Groundwater maintains dune landscape[J]. Nature, 2004,432:459.
[2]Chen Jiansheng, Fan Zhechao, Wang Jiyang, et al. Isotope methods for studying the replenishment of the lakes and downstream groundwater in the Badain Jaran desert[J]. Acta Geographica Sinica, 2003, 24(6):497-504.[陈建生, 凡哲超, 汪集旸,等.巴丹吉林沙漠湖泊及其下游地下水同位素分析[J]. 地球学报, 2003, 24(6):497-504.]
[3]Chen Jiansheng,Zhao Xia, Sheng Xuefen, et al. Formation mechanisms of megadunes and lakes in the Badain Jaran desert, Inner Mongolia[J]. Chinese Science Bulletin, 2006, 51 (24): 3 026-3 034.[陈建生, 赵霞, 盛雪芬,等.巴丹吉林沙漠湖泊群与沙山形成机理研究[J]. 科学通报, 2006,51(23):2 789-2 796.]
[4]Chen Jiansheng, Wang Jiyang. The impact of a underground reservoir found in Badain Jaran desert on the water transferring plan in northwest China[J]. Journal of Economics of Water Resources, 2004,(4): 1-8. [陈建生, 汪集旸. 试论阿尔金断裂中的地下河对西部水资源开发与经济发展的影响[J]. 水利经济, 2004,(4): 1-8.]
[5]Clark I D,Fritz P Fritz. Environmental Isotopes in Hydrology [M]. Boca Raton, New York: Lewis Publishers, 1997:35-110.
[6]Stimson J, Rudolph D, Frape S, et al.Interpretation of groundwater flow patterns through a reconstruction of the tritium precipitation record in the Cochabamba valley, Bolivia[J]. Journal of Hydrology, 1996, 180(1/4):155-172.
[7]Wei Keqin, Lin Ruifen, Wang Zhixiang, et al. The tritium distribution in the natural water in the China[J]. Chinese Science Bulletin, 1980, 25(10): 467-470.[卫克勤, 林瑞芬, 王志祥,等. 我国天然水中氚含量的分布特征[J]. 科学通报, 1980, 25(10):467-470.]
[8]Wang Ruijiu. Groundwater estimation of Spring Niangzi in Shanxi[J]. Hydrogeology and Engineering Geology, 1984, 6: 34-38. [王瑞久. 山西娘子关泉的地下水储量估算[J]. 水文地质工程地质, 1984, 6: 34-38.]
[9]Guan Bingjun. The extrapolation of tritium in the precipitation of China[J]. Hydrogeology and Engineering Geology, 1986, (4): 38-42.[关秉钧. 我国大气降水中氚的数值推算[J]. 水文地质工程地质, 1986, (4): 38-42.]
[10]Jiao Pengcheng, Wang Erli, Liu Chenglin. Characteristics and origin of tritium in the potassium-rich brine in Lop Nur, Xinjiang[J]. Nuclear Techniques,2004,27(9):710-715.[焦鹏程,王弭力,刘成林.新疆罗布泊盐湖卤水的氚同位素特征及其地质意义[J]. 核技术,2004, 27(9):710-715.]
[11]Liu Jinda. Fluorine concentration changing tentency study of China atmospheric precipitation in the recent ten years[J]. Site Investigation Science and Technology, 2001, 4:11-19.[刘进达. 近十年来中国大气降水氚浓度变化趋势研究[J]. 勘察科学技术,2001, 4:11-19.]
[12]Sun Peishan, Sun Deqin. The Study on Hydrogeology in the West area in Inner Mongolian: Research on Treatment to Desert (6th)[M]. Beijing:Science Press,1964: 245-317. [孙培善, 孙德钦. 内蒙古高原西部水文地质初步研究:治沙研究(第六号)[M].北京: 科学出版社,1964: 245-317. ]
[13]Hofmann J. The lakes in the SE part of Badain Jaran desert, their limnology and geochemistry[J]. Geowissenschaften,1996, 7(8): 275-278.
[14]Tan Jian’an. Native types of Alashan desert in Inner Mongolian [J].Journal of Geography,1964,8:1-31.[谭见安.内蒙古阿拉善荒漠的地方类型[J].地理集刊,1964,8:1-31. ]
[15]Wang Tao. Some discussions of Badain Jaran desert formation and evolution [J]. Journal of Desert Research,1990, 10(1): 29-40. [王涛. 巴丹吉林沙漠形成演变的若干问题[J]. 中国沙漠,1990, 10(1): 29-40.]
[16]Yang Xiaoping. Landscape and precipitation change in Badain Jaran desert in resent 30ka [J]. Chinese Science Bulletin,2000,45(4):428-434.[杨小平. 近三万年来巴丹吉林沙漠的景观发育与雨量变化[J]. 科学通报, 2000,45(4):428-434.]
[17]Cai Houxiong. Discussion of Quaternary stratigraphic division in the Badain Jaran desert[J]. Acta Geologica Gansu,1986,3:142-153.[蔡厚雄.巴丹吉林地区第四纪地层划分的探讨[J].甘肃地质,1986,3:142-153.]
[18]Ma Jinzhu, Edmunds W M. Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia[J]. Hydrogeology Journal, 2006, 14:1 231-1 243.
[19]Mazor E. Applied Chemical and Isotopic Groundwater Hydrology[M]. Milton Keynes: Open University Press,1991:147-164.
[20]Robertson W, Cherry J. Tritium as an indicator of recharge and dispersion in a groundwater system in central Ontario[J]. Water Resources Research,1989, 25(6):1 097-1 109.
[21]Zhang Guanghui, Liu Shaoyu, Zhang Cuiyun, et al. Evolution of groundwater circulation in the Heihe river drainage area[J].Chinese Geology,2004,31(3):289-293.[张光辉, 刘少玉, 张翠云,等.黑河流域地下水循环演化规律研究[J]. 中国地质,2004,31(3):289-293.]
[22]Zhang Guanghui, Nie Zhenlong, Wang Jinzhe, et al. Isotopic characteristic and recharge effect of groundwater in the water circulation of effect of Heihe river basin[J].Advances in Earth Science,2005,20(5):511-518.[张光辉,聂振龙,王金哲,等.黑河流域水循环过程中地下水位同位素特征及补给效应[J]. 地球科学进展, 2005, 20(5):511-518.]
[23]Wu Xuanmin, Shi Shengsheng, Li Zhiheng, et al. Study on groundwater system of the Ejina basin at the lower reaches of the Heihe river [J].Hydrogeology and Engineer Geology,2002,(1/2):16-20,30-33.[武选民, 史生胜, 黎志恒,等. 西北黑河下游额济纳盆地地下水系统研究[J]. 水文地质工程地质, 2002,(1/2):16-20,30-33.]
[24]Dansgaard W. Stable isotopes in precipitation[J].Tellus,1964,16:436-468.
[25]Zhang Yinghua, Wu Yanqing. Relation between oxygen and hydrogen isotopes in precipitation and temperature in Heihe river basin,China[J].Arid Land Geography,2007, 30(1):16-21.[张应华,仵彦卿. 黑河流域中上游地区降水中氢氧同位素与温度关系研究[J]. 干旱区地理, 2007,30(1):16-21.]
[26]Pearson F J, Balderer W, Loosli H H. et al. Applied isotope hydrology: A case study in northern Switzerland[J].Studies in Environmental Sciences,1991,43:439.
[27]Yao Tandong, Sun Weizhen, Pu Jianchen, et al. Characteristics of stable isotope in precipitation in the inland area—A case study of the relation between δ18O in precipitation and temperature in Urümqi river, China[J].Journal of Glaciolgy and Geocryology,2000,22(1):15-22.[姚檀栋, 孙维贞, 蒲健辰,等.内陆河流域系统降水中的稳定同位素——乌鲁木齐河流域降水中δ18O与温度关系研究[J].冰川冻土,2000,22(1):15-22.]
[28]Zhang Xinping, Yao Tandong, Jiao Keqin. The temporal and spatial variations of the δ18O in Firn of the Glacier No.1 at the headwaters of the Urumqi river during summer[J].Journal of Glaciolgy and Geocryology,2002,24(1):57-62.[章新平,姚檀栋, 焦克勤. 乌鲁木齐河源1号冰川夏季积雪中δ18O的时空变化[J]. 冰川冻土, 2002 , 24(1): 57-62.]
[29]Jouzel J, Frochlich K, Schotterer U. Deuterium and oxygen-18 in present day precipitation: Data and modeling[J].Journal of Hydrological Sciences,1997,42(5):747-763.
[30]Rozanski K, Johnson S J, Schotterer U, et al. Reconstruction of past climates from stable isotope records of palaeo precipitation preserved in continental archives[J].Journal of Hydrological Sciences,1997, 42(5):725-745.
[31]Ma Jinzhu, Wang Xiongshi, Edmunds W M. The characteristics of groundwater resources and their changes under the impacts of human activity in the arid northwest China—A case study of the Shiyang river basin[J].Journal of Arid Environment,2005,61:277-295.
[32]Edmunds W M,Ma Jinzhu, Aeschbach-Hertig W, et al. Groundwater recharge history and hydro geochemical evolution in the Minqin basin, north west China[J].Applied Geochemistry,2006,21:2 148-2 170.
[33]Zhang H C, Ma Y Z, Wunnemann B, et al. A Holocene climatic record from arid northwestern China[J].Palaogeography Palaoclimatology Palaoecology,2000,162:389-401.
[34]Guo Huadong,Liu Hao,Wang Xinyuan,et al. Subsurface old drainage detection and polaeoenvironment analysis using spaceborne rader images in Alax plateau[J].Science in China (Series D),2000,43(4):439-448.

[1] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[2] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[3] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[4] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[5] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[6] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[7] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[8] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[9] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
[10] 孙自永,程国栋,马瑞,甘义群. 雾水的D和 18O同位素研究进展[J]. 地球科学进展, 2008, 23(8): 794-802.
[11] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[12] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[13] 张虎才,明庆忠. 中国西北极端干旱区水文与湖泊演化及其巴丹吉林沙漠大型沙丘的形成[J]. 地球科学进展, 2006, 21(5): 532-538.
[14] 林田;郭志刚;杨作升. 类脂化合物单体碳稳定同位素在古气候环境研究中的意义[J]. 地球科学进展, 2005, 20(8): 910-915.
[15] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
阅读次数
全文


摘要