地球科学进展 ›› 2008, Vol. 23 ›› Issue (8): 794 -802. doi: 10.11867/j.issn.1001-8166.2008.08.0794

综述与评述 上一篇    下一篇

雾水的D和 18O同位素研究进展
孙自永 1,2,程国栋 2,马 瑞 1,甘义群 1   
  1. 1.中国地质大学环境学院,湖北 武汉 430074; 2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2008-05-07 修回日期:2008-06-12 出版日期:2008-08-10
  • 通讯作者: 孙自永 E-mail:ziyong.sun@hotmail.com
  • 基金资助:

    国家自然科学基金项目“内陆干旱区凝结水对植物水分补给作用的天然D、18O同位素示踪研究”(编号:40702042)资助.

Advances in the D and 18O Isotopes of Fog Water

Sun Ziyong 1,2,Cheng Guodong 2,Ma Rui 1,Gan Yiqun 1   

  1. 1.School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;2.Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China
  • Received:2008-05-07 Revised:2008-06-12 Online:2008-08-10 Published:2008-08-10

凝结水的D、18O同位素研究目前主要集中在雾水方面,露水和土壤吸附水的相关研究仍属空白。由于形成时的温度较高,大多数雾水的D、18O同位素较当地雨水富集,但不同类型雾的同位素特征存在差异。平流式海洋雾为单级的蒸发—冷凝封闭循环系统的首次凝结,D、18O同位素较当地雨水显著富集;热带云雾林中的地形雾与降雨同时发生,且水分源于同一云团,δD、δ18O值差异较小;内陆辐射雾因部分水汽源于当地水分的再循环,过量氘和δD、δ18O值高于降雨。目前有少量研究用D、18O同位素指示雾水对植被、地下水和地表径流的补给作用,但以定性分析为主,基于端元混合模型的定量评价极少。露水和土壤吸附水的稳定同位素研究是干旱区凝结水研究的重要方向;D、18O同位素与其它同位素或化学指标的结合有助于促进凝结水生态水文效应的研究进展;短间隔、高密度的长期观测和用于稳定同位素分析的凝结水采样器的设计是需要进一步开展的工作。

The previous studies on stable isotopes of condensation water are all about fog, without any study about dew or water vapor adsorbed by soil. In most of the studies, more isotopes have been found in fog than in rainfall, due to differences in the temperature of condensation of the water vapor, as well as the history of the air mass producing the precipitation. Fog isotope values have a large range depending on the temperatures and vapor sources in the study areas. Advective oceanic fog is quite isotopically enriched compared to rain in the same area because it is an early-stage condensate representing a single-stage evaporation (over the open ocean)-condensation (at the coast) cycle. In tropical cloud forest where orographic fog and rain are from the same cloud and occur simultaneously, fog has been found to be more isotopically enriched than rain, but differences between fog and rain are relatively small. Inland radiation fog, with water vapor partially originating from terrestrially recycled water, has the larger deuterium excess value and δD and δ18O values than precipitation originating from water vapor evaporated from the oceans. Stable isotope techniques have been used in a few cases to evaluate possible contribution of fog water to stream flow, plant transpiration, or groundwater recharge. But few studies assessed quantitatively the contribution employing end-member mixing model. Directions for future research may include the stable isotope studies of dew and water vapor absorbed by soil in arid regions, the combination of D and 18O with other isotopes or chemical indexes to evaluate eco-hydrological roles of fog, the long-term and intensive sampling strategies in stable isotope studies of condensation water, and the design of fog collectors for stable isotope samples.

中图分类号: 

[1] Agama NBerlinera P R. Dew formation and water vapor adsorption in semi-arid environments: A review [J]. Journal of Arid Environments200665:572-590.

[2] Glickman T S. Glossary of MeteorologySecond Edition[M]. Boston: American Meteorological Society2000.

[3] Ingraham N LMatthews R A. Fog drip as a source of ground water recharge in northern Kenya [J]. Water Resource Research198824: 1 406-1 410.

[4] William R. Sources of water [C]Kozlowski T Ted. Water Deficits and Plant Growth. New York: Academic Press1984: 1 406-1 410.

[5] Bruijnzeel L A. Hydrology of tropical montane cloud forests: A reassessment [J]. Land Use and Water Resources Research20011: 1-18.

[6] Aravena RSuzuki OPollastri A. Coastal fog and its relation to groundwater in the IV region of northern Chile [J]. Chemical Geology198979: 83-91.

[7] Ingraham N LMatthews R A. A stable isotopic study of fog: The Point Reyes PeninsulaCaliforniaUSA [J]. Chemical Geology199080: 281-290.

[8] Cereceda PSchemenauer R S. The occurrence of fog in Chile [J]. Journal of Applied Meteorology199130: 1 097-1 105.

[9] Ingraham N LMatthews R A. The importance of fog-drip water to vegetation: Point Reyes PeninsulaCalifornia [J]. Journal of Hydrology1995164: 269-285.

[10] Huntley L BDoley D. Water balance of an Australian subtropical rainforest at altitude: The ecological and physiological signifance of intercepted cloud and fog [J]. Australian Journal of Botany199745: 311-329.

[11] Dawson T E. Fog in the California redwood forest: Ecosystem inputs and use by plants [J]. Oecologia1998117: 476-485.

[12] Ingraham N LMark A F. Isotopic assessment of the hydrologic importance of fog deposition on tall snow tussock grass on southern New Zealand uplands [J]. Austral Ecology200025: 402-408.

[13] Corbin J DThomsen M ADawson T Eet al. Summer water use by California coastal prairie grasses: Fog droughtand community composition [J]. Oecologia2005145: 511-521.

[14] Gingerich S BTribble G W. The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East MauiHawaii [J]. Journal of Hydrology2002264: 170-184.

[15] Kerfoot O. Mist precipitation on vegetation [J]. Forestry Abstracts196829: 8-20.

[16] Weathers K CLikens G E. Clouds in southern Chile: An important source of nitrogen to nitrogen-limited ecosystems [J]. Environmental Science and Technology199731: 210-213.

[17] Eager CAdams M B. Ecology and Decline of Red Spruce in the Eastern United States [M]. New York: Springer-Verlag1992.

[18] Burgess S S ODawson T E. The contribution of fog to the water relations of Sequoia sempervirensD. Don: Foliar uptake and prevention of dehydration [J]. Plant Cell and Environment200427:1 023-1 034.

[19] Jacobs A F GHeusinkveld B GBerkowicz S M. A simple model for potential dewfall in an arid region [J]. Atmospheric Research200264:285-295.

[20] Evenari M. Adaptations of plants and animals to the desert environment [C]Evenari MNoy-Meir IGoodall D Weds. Hot Deserts and Arid Shrublands. Ecosystems of the WorldVol.12A. Amsterdam: Elsevier1985: 79-92.

[21] Lange O LBelnap JReichenberger H. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern UtahUSA: Role of water content on light and temperature responses of CO2 exchange [J]. Functional Ecology199812: 195-202.

[22] Gutterman YShem-Tov S. Mucilaginous seed coat structure of Carrichtera annua and Anastatica hierochuntica from the Negev Desert highlands of Israeland its adhesion to the soil crust [J]. Journal of Arid Environments199735: 695-705.

[23] Slatyer R O. Plant-Water Relationships [M]. London: Academic Press1967.

[24] Pitacco AGallinaro NGiulivo C. Evaluation of actual evapotranspiration of a Quercus ilex L. stand by the Bowen ratio-energy budget method [J]. Plant Ecology1992,(99/100:163-168.

[25] Duvdevani S. Dew in Israel and its effect on plants [J]. Soil Science19642: 14-21.

[26] Subramanian A RKesava-Rao A V R. Dew fall in sand dune areas of India [J]. International Journal of Biometeorology198327: 271-280.

[27] Goossens DOffer Z Y. Comparisons of day-time and night-time dust accumulation in a desert region [J]. Journal of Arid Environments199531: 253-281.

[28] Agama NBerliner P R. Diurnal water content changes in the bare soil of a coastal desert [J]. Journal of Hydrometeorology20045: 922-933.

[29] Kidron G J. Analysis of dew precipitation in three habitats within a small arid drainage basinNegev HighlandsIsrael [J]. Atmospheric Research200055: 257-270.

[30] Kosmas CDanalatos N GPoesen Jet al. The effect of water vapour adsorption on soil moisture content under Mediterranean climatic conditions [J]. Agricultural Water Management199836: 157-168.

[31] Gonfiantini RLonginelli A. Oxygen isotope compositions of fog and rains from the North Atlantic [J]. Experientia196218: 222-223.

[32] Dawson T EVidiella P E. Plant-fog interactions in California and Chile [C]Schemenauer R SBridgman Heds. Proceedings of the First International Conference on Fog and Fog Collection. Ottawa: IDRC/CRDI Publication1998: 225-228.

[33] Squeo F AAravena RAguirre Eet al. Groundwater dynamics in a coastal aquifer in north-central Chile: Implications for groundwater recharge in an arid ecosystem [J]. Journal of Arid Environments200667: 240-254.

[34] Rhodes A LGuswa A JNewell S E. Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of MonteverdeCosta Rica [J]. Water Resources Research200642:W11402.

[35] Feild T SDawson T E. Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest [J]. Ecology199879: 1 448-1 452.

[36] te Linde A H. Stable Isotopes in RainfallThroughfall and Fog in the Luquillo MountainsPuerto Rico [R]. Amsterdam: Vrije Universiteit2000.

[37] Eugster WBurkard RHolwerda Fet al. Fog water inputs to a cloud forest in Puerto Rico [J]. EOSTransactionsAmerican Geophysical Union200283: H52A-0828.

[38] Scholl M AGingerich S BTribble G W. The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East MauiHawaii [J]. Journal of Hydrology2002264: 170-184.

[39] Scholl M AGingerich S BGiambelluca T Wet al. Quantifying the role of cloud water in the hydrology of two montane forest sites on East MauiHawaii [J]. EOSTransactions of the American Geophysical Union200384: F687.

[40] Clark I DFritz PQuinn O Pet al. Modern and fossil groundwater in an arid environment: A look at the hydrogeology of southern Oman [C]Symposium on Isotope Techniques in Water Resources Development. Vienna: International Atomic Energy Agency1987: 167-187.

[41] Liu W JZhang Y PLi H Met al. Fog drip and its relation to groundwater in the tropical seasonal rain forest of XishuangbannaSouthwest China: A preliminary study [J]. Water Research200539: 787-794.

[42] Liu W JLiu W YLi P Jet al. Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of XishuangbannaSW China [J]. Agricultural and Forest Meteorology2007143: 80-91.

[43] Clark I DFritz P. Environmental Isotopes in Hydrogeology [M]. New York: CRC Press1997.

[44] Dansgaard W. Stable isotopes in precipitation [J]. Tellus196416: 436-468.

[45] Siegenthaler UOeschger H. Correlation of 18O in precipitation with temperature and altitude [J]. Nature1980285: 314-317.

[46] Federer BBrichet NJouzel J. Stable isotopes in hailstones. Part I: The isotopic cloud model [J]. Journal of the Atmospheric Sciences198239:1 323-1 335.

[47] Gedzelman S DArnold R. Modeling the isotopic composition of precipitation [J]. Journal of Geophysical Research199499: 10 455-10 471.

[48] Jouzel JMerlivat LRoth E. Isotopic study of hail [J]. Journal of Geophysical Research197580:5 015-5 030.

[49] Scholl MEugster WBurkard R. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests [C]Bruijnzeel L AJuvik JScatena F Net al. Mountains in the Mist: Science for Conserving and Managing Tropical Montane Cloud Forests. Honolulu: University of Hawaii Press2008in press.

[50] Burkard RBützberger PEugster W. Vertical fogwater flux measurements above an elevated forest canopy at the Lägeren research siteSwitzerland [J]. Atmospheric Environment200337: 2 979-2 990.

[51] Thorburn P JHatton T JWalker G R. Combining measurements of transpiration and stable isotopes of water to determine groundwater discharge from forests [J]. Journal of Hydrology1993150: 563-587.

[52] Dawson T EEhleringer J R. Plantsisotopes and water use: A catchment-scale perspective [C]Kendall CMcDonnell J Jeds. Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier1998:165-202.

[53] Wang X FYakir D. Using stable isotopes of water in evapotranspiration studies [J]. Hydrological Processes200014:1 407-1 421.

[54] Salati EDall'Olio AMatsui Eet al. Recycling of water in the Amazon basin: An isotopic study [J]. Water Resources Research197915: 1 250-1 258.

[55] Martinelli L AVictoria R LSternberg L S Let al. Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin [J]. Journal of Hydrology1996183: 191-204.

[56] Gat J R. Atmospheric water balance: The isotopic perspective [J]. Hydrological Processes200014: 1 357-1 369.

[57] White J W CCook E RLawrence J Ret al. The D/H ratio of sap in trees: Implications for water sources and tree ring D/H ratios [J]. Geochimica et Cosmochimica Acta198549:237-246.

[58] Dawson T EEhleringer J R. Streamside trees that do not use stream water [J]. Nature1991350:335-337.

[59] Thorburn P JWalker G R. Variations in stream water uptake by Eucalyptus camaldulensis with differing access to stream water [J]. Oecologia1994100:293-301.

[60] Dawson T EPate J S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: A stable isotope investigation [J]. Oecologia1996107: 13-20.

[61] Snyder K AWilliams D G. Water sources used by riparian trees varies among stream types on the San Pedro riverArizona [J]. Agricultural and Forest Meteorology2000105: 227-240.

[62] Sternberg L da S LSwart P K. Utilization of freshwater and ocean water by coastal plants of southern Florida [J]. Ecology198768: 1 898-1 905.

[63] Sternberg L da S LIsh-Shalom-Gordon NRoss Met al. Water relations of coastal plant communities near the ocean/freshwater boundary [J]. Oecologia199188: 305-310.

[64] Ehleringer J RPhillips S LSchuster W S Fet al. Differential utilization of summer rain by desert plants [J]. Oecologia199188:430-434.

[65] Lin JPhillips SEhleringer J R. Monsoonal precipitation responses of shrubs in a cold desert community of the Colorado plateau [J]. Oecologia1996106: 8-17.

[66] Cheng X LAn S QLi Bet al. Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China [J]. Plant Ecology2006184: 1-12.

[67] Williams D GEhleringer J R. Intra-and interspecific variation for summer precipitation use in Pinyon-Juniper woodlands [J]. Ecological Monographs200070: 517-537.

[68] Dawson T E. The use of fog precipitation by plants in coastal redwood forests [C]LeBlanc Jed. Proceedings of the Conference on Doastal Redwood Forest Ecology and Management. Humboldt: University of California Cooperative Extension Forestry Publication1996: 90-93.

[69] Cameron C SMurray D LFahey B Det al. Fog depositions in tall tussock grasslandSouth IslandNew Zealand [J]. Journal of Hydrology1997193: 363-376.

[70] Zhuang YanliZhao Wenzhi. Advances in the condensation water of arid regions [J]. Advances in Earth Science2008231: 31-37.[庄艳丽,赵文智.干旱区凝结水研究进展[J]. 地球科学进展,2008231: 31-37.]

[71] Jacobs A F GHeusinkveld B GBerkowicz S M. Dew measurements along a longitudinal sand dune transectNegev desertIsrael [J]. International Journal of Biometeorology200043: 184-190.

[72] Saxena R K. Estimation of canopy reservoir capacity and oxygen 18 fractionation in throughfall in a pine forest [J]. Nordic Hydrology198617:251-260.

[73] Brodersen CPohl SLindenlaub Met al. Influence of vegetation structure on isotope content of throughfall and soil water [J]. Hydrological Processes2000148:1 439-1 448.

[74] Kendall C. Temporalspatial and species effects on the oxygen and hydrogen isotopic compositions of throughfall [J]. EOSTransactions of the American Geophysical Union19927343: 160.

[75] Barnes C JTurner J V. Isotopic exchange in soil water [C]Kendall CMcDonnell J Jeds. Isotope Tracers in Catchment Hydrology.Amsterdam: Elsevier1998:137-163.

[76] McDonnell J JBonell MStewart M Ket al. Deuterium variations in storm rainfall: Implications for stream hydrograph separation [J]. Water Resources Research199026: 455-458.

[1] 李昂,王化锋,宁立波,胡闯,朱晛亭. 边坡裂隙岩体内凝结水形成区域的分布特征[J]. 地球科学进展, 2020, 35(2): 189-197.
[2] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[3] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[4] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[5] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[6] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[7] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[8] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[9] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
[10] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[11] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[12] 庄艳丽,赵文智. 干旱区凝结水研究进展[J]. 地球科学进展, 2008, 23(1): 31-38.
[13] 马金珠,黄天明,丁贞玉,W.M.Edmunds. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9): 922-930.
[14] 林田;郭志刚;杨作升. 类脂化合物单体碳稳定同位素在古气候环境研究中的意义[J]. 地球科学进展, 2005, 20(8): 910-915.
[15] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
阅读次数
全文


摘要