地球科学进展 ›› 2020, Vol. 35 ›› Issue (2): 189 -197. doi: 10.11867/j.issn.1001-8166.2020.017

研究论文 上一篇    下一篇

边坡裂隙岩体内凝结水形成区域的分布特征
李昂 1( ),王化锋 2,宁立波 1( ),胡闯 1,朱晛亭 1   
  1. 1.中国地质大学(武汉) 环境学院 水文地质系,湖北 武汉 430078
    2.陕西地矿第一地质队有限公司,陕西 安康 725000
  • 收稿日期:2019-11-21 修回日期:2020-01-10 出版日期:2020-02-10
  • 通讯作者: 宁立波 E-mail:460387349@qq.com;984364443@qq.com
  • 基金资助:
    国家自然科学基金项目“我国东北地区晚更新世野牛古DNA分子的演化研究”(41972001);安徽省自然资源厅科技项目“矿山高陡岩质边坡复绿地境再造技术研究”(2016-k-9)

Distribution Characteristics of Formed Region of Condensate in Slope Fractured Rock Mass

Ang Li 1( ),Huafeng Wang 2,Libo Ning 1( ),Chuang Hu 1,Xianting Zhu 1   

  1. 1.Department of Hydrogeology, School of Environmental Studies, China University of Geoscience (Wuhan), Wuhan 430078, China
    2.Shaanxi Geology First Geological Team Co. , Ltd. , Shaanxi Ankang 725000, China
  • Received:2019-11-21 Revised:2020-01-10 Online:2020-02-10 Published:2020-03-24
  • Contact: Libo Ning E-mail:460387349@qq.com;984364443@qq.com
  • About author:Li Ang (1995-), male, Luoyang City, He'nan Province, Master student. Research areas include environmental geology and ecological geology. E-mail: 460387349@qq.com
  • Supported by:
    the National Natural Science Foundation of China “Study on the evolution of ancient DNA molecules in late pleistocene bison in northeast China”(41972001);The Science and Technology Project of Anhui Department of Natural Resources “Study on below-ground habitat reconstruction technology of high and steep rock slope”(2016-k-9)

以安庆市集贤关一处高陡岩质边坡为研究对象,结合裂隙岩体内春夏秋冬四季4 m深度范围内的温度与相对湿度监测数据,通过研究裂隙岩体内的水热运移和相对湿度过饱和频率的变化特征,对凝结水形成区域进行划分。结果表明:裂隙岩体内水汽过饱和频率沿水汽运移方向逐渐增加;夏季裂隙岩体内由浅到深依次为水汽欠饱和带、近饱和带、过饱和带,凝结水主要形成于深部,秋冬两季依次为水汽欠饱和带、过饱和带、近饱和带和欠饱和带,凝结水主要形成于浅部,春季依次为水汽欠饱和带、近饱和带和过饱和带,凝结水形成区域的分布范围较大。

Taking a high and steep rocky slope in Jixianguan, Anqing city as the research object, combining with the temperature and relative humidity monitoring data within a depth of 4 m in the spring, summer, autumn and winter of the fractured rock mass, we divided the formed region of condensed water by studying the water vapor and heat migration in the fractured rock mass and the changing characteristics of supersaturated frequency of relative humidity. The results showed that the frequency of water vapor supersaturation in fractured rock increased gradually along its migration direction. In summer, from shallow to deep, the fractured rock mass is in the order of water vapor unsaturated zone, near-saturated zone and supersaturated zone and condensate is mainly formed in the deep; in autumn and winter, from shallow to deep, there are unsaturated zones of water vapor, supersaturated zone, near-saturated zone and unsaturated zone and condensate is mainly formed in the shallow part; in spring, the water vapor undersaturated zone, near-saturated zone and supersaturated zone are in order and the distribution range of condensate formed region is large.

中图分类号: 

图1 试验场地理位置图
Fig.1 Geographical location of the test site
图2 监测点相对位置示意图
Fig.2 Relative position of monitoring points
表1 监测时段统计表
Table 1 Statistics of monitoring periods
表2 夏季各监测点温度、绝对湿度与水汽分压均值统计表
Table 2 Mean values of temperature, absolute humidity and water vapor partial pressure at each monitoring point in summer
图3 夏季不同深度的温度、湿度和水汽分压均值变化曲线图
Fig.3 Curve of mean changes of temperature and humidity and water vapor partial pressure at different depths in summer
图4 秋季不同深度的温度、湿度和水汽分压均值变化曲线图
Fig.4 Curve of mean changes of temperature and humidity and water vapor partial pressure at different depths in autumn
图5 冬季不同深度的温度、湿度和水汽分压均值变化曲线图
Fig.5 Curve of mean changes of temperature and humidity and water vapor partial pressure at different depths in winter
图6 春季不同深度的温度、湿度和水汽分压均值变化曲线图
Fig.6 Curve of mean changes of temperature and humidity and water vapor partial pressure at different depths in spring
图7 四季不同深度水汽过饱和频率条形图
Fig.7 Bar chart of water vapor supersaturation frequency at different depths in four seasons
表3 夏季各监测点分带结果统计表
Table 3 Results of different monitoring points in summer
表4 秋季各监测点分带结果统计表
Table 4 Results of different monitoring points in autumn
表5 冬季各监测点分带结果统计表
Table 5 Results of different monitoring points in winter
表6 春季各监测点分带结果统计表
Table 6 Results of different monitoring points in spring
图8 四季凝结水形成区域空间分带图
Fig.8 Spatial zoning diagram of seasonal condensation formation region
1 Shen Youxin, Zhao Zhimeng, Bi Shengchun, et al. Rock outcrop and its ecological function in terrestrial ecosystem [J]. Advances in Earth Science, 2008,33(4):343-349.
沈有信,赵志猛,毕胜春,等.陆地系统中的露石及其生态作用[J].地球科学进展,2018,33(4):343-349.
2 Freitas C R D, Schmekal A. Condensation as a microclimate process: Measurement, numerical simulation and prediction in the Glowworm Cave, New Zealand[J]. International Journal of Climatology, 2003, 23(5):557-575.
3 Lefebvre R, Lamontagne A, Wels C, et al. ARD production and water vapor transport at the Questa mine[C]//Proceedings of the 9th International Conference on Tailings and Mine Waste,Fort Collins, CO, USA,2002.
4 Gázquez F, Calaforra J M, Forti P, et al. The role of condensation in the evolution of dissolutional forms in gypsum caves: Study case in the karst of Sorbas (SE Spain)[J]. Geomorphology, 2015, 229: 100-111.
5 Huang Jizhong, Wan Li, Peng Tao, et al. Investigation of water sources in Yungang grottoes and some achievements [J]. Geotechnical Investigation & Surveying,2012,40(11):1-5, 11.
黄继忠,万力,彭涛,等.云冈石窟水分来源探查工程及若干成果[J].工程勘察,2012,40(11):1-5, 11.
6 Wan Li, Cao Wenbing, Wang Xusheng, et al. Preliminary study on water vapor transformation characteristics of Yungang grottoes [J]. Geotechnical Investigation & Surveying,2012,40(11):6-11.
万力,曹文炳,王旭升,等.云冈石窟水汽转化特征的初步研究[J].工程勘察,2012,40(11):6-11.
7 Li Huaxiang, Ning Libo, Huang Jingchun, et al. Study on the distribution of temperature and humidity in water vapor field of fractured rock mass and the law of vapor liquid transformation—A case study of Yiyang Jingping Mountain, Henan Province [J]. Hydrogeology & Engineering Geology,2017,44(6):9-14, 24.
李华翔,宁立波,黄景春,等.裂隙岩体水汽场内温湿度分布及汽液转化规律研究——以河南省宜阳锦屏山为例[J]. 水文地质工程地质,2017,44(6):9-14, 24.
8 Zhu Xianting, Huang Jingchun, Ning Libo, et al. Spatial and temporal distribution of condensate in fractured rock mass: A case study of Yiyang Jingping Mountain [J]. Hydrogeology & Engineering Geology, 2018, 45(4): 1-7.
朱晛亭,黄景春,宁立波,等.裂隙岩体内凝结水时空分布规律——以宜阳锦屏山为例[J].水文地质工程地质,2018,45(4):1-7.
9 Zhang Renquan, Liang Xing, Jin Menggui, et al. Fundamentals of Hydrogeology (Sixth Edition) [M]. Beijing: Geological Publishing House,2011.
张人权,梁杏,靳孟贵,等.水文地质学基础(第六版)[M].北京:地质出版社,2011.
10 Xie Ruisheng USA). Thermodynamic Principle [M]. Beijing: People's Education Press,1980.
谢锐生(美.热力学原理[M]. 北京:人民教育出版社,1980.
11 Yan Jialu,Yu Xiaofu,Wang Yongqing, et al. Diagram of Thermodynamic Properties of Water and Steam [M]. Beijing: Higher Education Press,2004.
严家騄,余晓福,王永青,等.水和水蒸气热力学性质图表[M]. 北京:高等教育出版社,2004.
12 Liu Jianwen, Guo Hu, Li Yaodong. Basis of Physical Quantity Calculation for Weather Analysis and Prediction [M]. Beijing: China Meteorological Press,2005.
刘健文,郭虎,李耀东.天气分析预报物理量计算基础[M]. 北京:气象出版社,2005.
13 Yu Qiming, Ning Libo, Zhao Guohong, et al. Study of seasonal variation law of water vapor field humidity in fractured rock mass [J]. Water Resources and Power,2019,37(12):91-94.
余启明,宁立波,赵国红,等.裂隙岩体水汽场湿度季节变化规律研究[J].水电能源科学,2019,37(12):91-94.
14 Zou Bangyin. Thermodynamics and Molecular Physics [M]. Wuhan: Central China Normal University Press,2004.
邹邦银.热力学与分子物理学[M]. 武汉:华中师范大学出版社,2004.
15 Zhou Shuzhen. Meteorology and Climatology [M]. Beijing: Higher Education Press,1997.
周淑贞.气象学与气候学[M].北京:高等教育出版社,1997.
16 Zhu Hua, Yang Gangliang, Fang Yun, et al. Study on formation mechanism and control measures of condensate disease in Qianxi temple of Longmen grottoes [J]. Cultural Relics of Central China,2008,(4):109-112.
朱华,杨刚亮,方云,等.龙门石窟潜溪寺凝结水病害形成机理及防治对策研究[J].中原文物,2008,(4):109-112.
17 Han Shuangping, Jing Jihong, Jing Lei, et al. Observation of temperature field and condensate [J]. Acta Geoscientica Sinica,2007,(5):482-487.
韩双平,荆继红,荆磊,等.温度场与凝结水的观测研究[J].地球学报,2007,(5):482-487.
18 Liu Hu, Zhao Wenzhi, Li Zhongkai. Ecohydrology of groundwater dependent ecosystems: A review [J]. Advances in Earth Science, 2008,33(7):741-750.
刘鹄,赵文智,李中恺.地下水依赖型生态系统生态水文研究进展[J].地球科学进展,2018,33(7):741-750.
[1] 孙自永,程国栋,马瑞,甘义群. 雾水的D和 18O同位素研究进展[J]. 地球科学进展, 2008, 23(8): 794-802.
[2] 庄艳丽,赵文智. 干旱区凝结水研究进展[J]. 地球科学进展, 2008, 23(1): 31-38.
阅读次数
全文


摘要