Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (5): 532-538    DOI: 10.11867/j.issn.1001-8166.2006.05.0532
探索与争鸣     
中国西北极端干旱区水文与湖泊演化及其巴丹吉林沙漠大型沙丘的形成
张虎才1,2,明庆忠2,3
1.中国科学院南京地理与湖泊研究所,江苏 南京 210008; 2.兰州大学资源与环境学院,中国西部环境系统教育部重点实验室,甘肃 兰州 730000;3.云南师范大学旅游与地理学院,云南 昆明 650092
Zhang Hucai1,2,Ming Qingzhong2,3
 全文: PDF(157 KB)  
摘要:

地表径流和地下水循环是维持中国西部现今极端干旱区绿洲、湖泊和地下水位变化的绝对主导因素。极少的年降水量和年际—季节降水分布的不均性、强烈的蒸发、蒸腾作用,稀少而水量有限的地表径流和人类活动的影响及其过度的水资源利用是导致目前自然景观和生态环境恶化的根本原因。不仅如此,在这样一个大的气候背景条件下,人类不合理、不科学的活动可以夸张的放大和加速生态系统的恶化程度和速度,而要维持、改善和修复已破坏的生态环境则需长期不懈的努力和巨大的人力、资金投入。地质断裂带不但具有蓄水、导水的作用,还具有隔水作用;断裂体系中含水量的丰寡与断裂的性质(张性或压性)、发育的地质部位和年代等因素有关。断裂构造对水的这种蓄—导—隔作用,在不同地理单元是不同的:在地势较高的部位以导为主,在低洼的地方则以蓄为主,而在前二者之间的过渡区则以导—隔为主。额济纳盆地地下水位变化和水资源(或潜在水资源)量的大小是以地表径流补给为主、地下水为辅,是区域蒸发、蒸腾和水资源利用之间平衡过程的表现;而在巴丹吉林沙漠区,特别是其东南部众多的湖泊区则是以地下水补给为主,加之以古水为辅。虽然我们还不十分清楚巴丹吉林沙漠内部高大沙丘和湖泊形成时期的相互作用和依存关系,但是我们却有足够的证据证明高大沙丘形态的维持与湖泊之间不存在必然的因果关系。直接通过阿尔金山断裂体系对额济纳盆地和巴丹吉林沙漠、腾格里沙漠水量的贡献是否真正存在还缺乏地质证据或者至少是十分有限。对中国西部干旱—极端干旱区水资源进行科学而深入、系统而规范、全面而统一的调查和规划,调整和协调,采用科学的流域管理模式,利用生态修复、动态调控、工程保障等措施对于维持整个流域生态环境的稳定和持续发展、维系中下游,特别是酒泉基地和额济纳绿洲是十分必要而迫切的。对于巴丹吉林沙漠东南部地下水和湖泊水的开发和利用的设想既不利于该区生态环境的维持和改善,也缺乏科学依据和工程的可行性。西北干旱—极端干旱区水文循环和水量是气候环境决定的,不仅现代如此,过去也是如此。

关键词: 水文与湖泊演化极端干旱区巴丹吉林沙漠    
收稿日期: 2005-09-06 出版日期: 2006-05-15
:  P343.3  
基金资助:

国家自然科学基金项目“居延海及巴丹吉林沙漠末次冰期间冰段古湖泊与环境变化”(编号:40371117);中国科学院“百人计划”资助.

通讯作者: 张虎才     E-mail: zhanghc@niglas.ac.cn
作者简介: 张虎才(1962-),男,陕西凤翔人,研究员,主要从事第四纪地质学与自然地理学、湖泊沉积与环境变化、人类活动与古气候模拟方面的研究.E-mail:zhanghc@niglas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张虎才
明庆忠

引用本文:

张虎才,明庆忠. 中国西北极端干旱区水文与湖泊演化及其巴丹吉林沙漠大型沙丘的形成[J]. 地球科学进展, 2006, 21(5): 532-538.

Zhang Hucai,Ming Qingzhong. . Advances in Earth Science, 2006, 21(5): 532-538.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.05.0532        http://www.adearth.ac.cn/CN/Y2006/V21/I5/532

[1] Arnaud N, Delville N, Montel J M, et al. Paleozoic to Cenozoic Deformation along the Altyn Tagh Fault in the Altun Shan Massif area, Eastern Qilianshan, NE Tibet, China[Z]. American Geophysical Union Annual Meeting Abstracts, 1999:F1018.

[2] “Altun Active Fault Zone” Team, State Seismlogical Bureau. Altun Active Fault Zone[M]. Beijing: Seismlogical Publishing House, 1992.

[3] Bendick R, Bilham R, Freymueller J, et al. Geodetic evidence for a low slip rate in the Altyn Tagh fault system[J]. Nature, 2000, 404: 69-72.

[4] Bradley D R, Ulderico B. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China[J]. GSA Bulletin,2000, 112(1): 61-74.

[5] Cowgill E, An Y, Wang X F, et al. Is the north Altyn fault part of a strike-slip duplex along the Altyn Tagh fault system?[J]. Geology,2000,28(3):255-258.

[6] Cui J W, Li L, Yang J S, et al. The Altun fault: Its geometry, nature and mode of growth[J]. Acta Geologica Sinica, 2001, 75 (2): 133-143.

[7] Edward R S, Arnaud N. A possible middle Paleozoic suture in the Altyn Tagh, NW China[J]. Tectonics,1999,18 (1): 64-74.

[8] Wittlinger G, Tapponnier P, Poupinet G, et al. Tomographic evidence for localized lithoshperic shear along the Altyn Tagh fault[J]. Science,1998, 282: 74-76.

[9] Guo S M, Xiang H F. A study on spatial 2 temporal distribution of the fault sinistral displacement in the Altun structure system since Oligocene-Miocene[J]. Seismology and Geology,1998, 20(1): 92, 17.

[10] Jolivet M, Roger F, Arnaud N. Exhumation history of the Altun Shan with evidence for the timing of the subduction of the Tarim block beneath the Altyn Tagh system, North Tibet[J]. Earth & Planetary Science, 1999, 329: 749-755.

[11] Li H B, Yang J S, Xu Z Q, et al. Geological and chronological evidence of Indo-Chinese strike-slip movement in the Altyn Tagh fault zone[J]. Chinese Science Bulletin,2002,1(2):27-32.

[12] Liu Y J, Ye H W, Ge X H, et al. Laser probe 40Ar/39Ar dating of micas on the deformed rocks from Altyn fault and its tectonic implications, western China[J]. Chinese Science Bulletin, 2001, 46(4): 322-325.

[13] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effect of a continental collision[J]. Science,1975,189: 419-426.

[14] Royden L H, Burchfiel B C, King B W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276: 788-790.

[15] Ren S M, Ge X H, Liu Y J. Progress in Altyn fault belts research[J]. Advance in Earth Sciences, 2003, 18(3):386-391.

[16] Rumelhart P E, An Y, Cowgill E, et al. Cenozoic vertical axis rotation of the Altyn Tagh fault system[J]. Geology, 1999, 27(9): 819-822.

[17] Sobel E R, Arnaud N. A possible middle Paleozoic suture in the Altyn Tagh, NW China[J]. Tectonics,1999,18(1): 64-74.

[18] Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of China[J]. Journal of Geophysical Research,1977, 82(20):2 905-2 930.

[19] Washburnl Z, Arrowsmith J R, Steven L F, et al. Late Holocene earthquake history of the central Altyn Tagh fault, China[J]. Geology,2001, 29(11):1 051-1 054.

[20] Yang F,Ye S J, Cao C H, et al. Right lateral characteristics of the Middle Eastern segment of Altun fault in Cenozoic era[J]. Scientia Geologica Sinica,1994,29(4): 346-354.

[21] Yue Y J, Bradley D R, Graham S A. Initiation and long-term slip history of the Altyn Tagh fault[J]. International Geology Review, 2001, 43:1-7.

[22] Zhang J X, Zhang Z M, Xu Z Q, et al. Discovery of khondalite series from the western segment of Altyn Tagh and their petrological and geochronological studies[J]. Science in China(Series D), 2000, 43(3): 308-316.

[23] Zheng J D. Geometry of the Altun fracture zone[J]. Regional Geology of China,1991,(1):54-59.

[24] Zhou Y, Pan Y S. The initial shear sense of the Altun fault and its timing[J]. Geological Review, 1999, 45(1):1-9.

[25] Zhou D, Stephan A G. Extrusion of the Altyn Tagh wedge: A kinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China[J]. Geology, 1996, 24(5): 427- 430.

[26] Zhu Y Z, Zhong J H, Wu B H, et al. Preliminary approach to relationship between uplifting history of Altun mountains and salt forming condition in Tarim and Qaidam basins[J]. Oil & Gas Geology, 1990, 11(2):136-142.

[27] Ding G Y. River offsets of active strike-slip faults and earthquakes[J]. Earthquake, 1982,1: 1-8.

[28] He G Q, Zhang B A, Liao Y M, et al. Discussion on the microgas distribution and the recent activity of Aerjin fault[J]. Northwestern Seismological Journal,1989,11(1):16-20.

[29] Gaudemer Y, Tapponnier P, Turcotte D L. River offsets across active strike-slip fault[J]. Annales Tectonica, 1989,3(2): 55-76.

[30] Guo S M, Xiang H F. A study on spayial-tempeoral distribution of the fault sinistral displacement in the Altun structure system since Oligocene-Miocene[J]. Seismology and Geology,1998,20(1): 9 -17.

[31] Meng Q R, Hu J M, Yang F Z. Timing and magnitude of displacement on the Altyn Tagh fault: Constrains from stratigraphic correlation of adjioining Tarim and Qaidam basins, NW China[J]. Terra Nova,2001,13:86-91.

[32] Meyer B, Tapponnier P, Gaudemer Y, et al. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96°E(China)[J]. Geophysical Journal of International,1996,124:29-44.

[33] Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach[J]. Journal of Geophysical Research,1988,93:15 085-15 117.

[34] Peltzer G, Tapponnier P, Armijo R. Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet[J]. Science,1989,246:1 285-1 289.

[35] Wang E C. Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet[J]. Earth and Planetary Science Letters, 1997, 150: 55-64.

[36] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature,1976,264:319-324.

[37] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,2001.294:1 671-1 677.

[38] Xiang H F, Guo S M, Zhang W X, et al. River offset and slip rate of the east segment of Altyn Tagh fault zone since Quaternary[J]. Seismology and Geology,2000,22(2):129-138.

[39] Zachary Washburnl, Arrowsmith J R, Steven L F, et al. Late Holocene earthquake history of the central Altyn Tagh fault, China[J]. Geology, 2001,29(11):1 051-1 054.

[40] Hess J, Bender M L, Schilling J, et al. Evolution of the ratio of strontium 87 to strontium 86 in seawater from Cretaceous to Present[J]. Science,1986,231:979-984.

[41] Rozanski K, Araguas L, Gonfiantini R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate[J]. Science,1992,258:981-985.

[42] Rademacher L K, Clark J F, Hudson G B. Temporal changes in stable isotope composition of spring waters: Implications for recent changes in climate and atmospheric circulation[J]. Geology,2002,30(2):139-142.

[43] Dataset: http://isohis.iaea.org/news.asp,2005.

[44] Zhang H C, Ma Y Z, Wünnemann B, et al. A Holocene climatic record from arid northwestern China[J]. Palaeogeography Palaeoclimatogy Palaeoeco,2000,162:389-401.

[45] Chen Bailin, Dang Guangmin, Cui Wei, et al. Advances in study of crustal stability in Hexi Corridor, Northwestern China[J]. Journal of Geomechanics,2003,3:14-20.

[46] Chen Longheng, Qu Yaoguang, et al. Rational Development and utilization of Water and Land Resources in Hexi Region[M]. Beijing: Science Press, 1992.

[47] Chen Longheng. Land desertification and its control in the lower reaches of Heihe River[J]. Natural Resources,1996,1:35-43.

[48] Ding Hongwei, Wang Guiling, Huang Xiaohui. Runoff reduction into Hongyashan reservior and analysis on water resources crisis of Minqin Oasis[J]. Journal of Desert Research,2003,1:84-89.

[49] Ding Hongwei, Zhang Ju. The problem of environment caused by groundwater level continuous decline in the inland basins of arid area, Northwest China[J]. Hydrology and Engineering Geology,2002, 3:71-75.

[50] Ding Hongwei, Yao Xingrong, Yan Chengyun, et al. Orientation of water seeking in the area of water shortage located in Qilianshan Mountain pediment of Hexi Corridor[J]. Hydrology and Engineering Geology,2002,6:17-34.

[51] Dong Zhi, Yao Yunfeng, Li Hongli, et al. Present situation and countermeasure comprehensive restoration of the ecoenvironment of Ejina Oasis[J]. Journal of Arid Land Resources and Environment,2000,14 (Suppl.): 1-4.

[52] Dong Guanrong, Gao Quanzhou, Zou Xueyong, et al. Climatic changes in the southern fringe of Badain Jaran, since the Late Pleistocene[J]. Chinese Science Bulletin,1995,40(13):1 214-1 218.

[53] Earth Sciences Division of Chinese Academy of Sciences. Investigation report of water uses and ecological rescues[J]. Advances of Earth Science,1996,11(1):124.

[54] Earth Sciences Division of Chinese Academy of Sciences. Urgent recommendation on rescuing Ejina Oasis[J]. Advances of Earth Sciences, 1996, 11(1):526.

[55] Gao Qianzhao, Li Fuxing, et al. Case Study of Rational Development and Utilization of Water Resources in the Heihe River Basin[M]. Lanzhou: Gansu Science and Technology Press, 1991.

[56] Gao Qianzhao, Li Xiaoyan, Wu Yanqing, Hu Xinglin, Transformation of water resources in the inland iver basins of Hexi region[J]. Journal of Glaciaology and Geocryology,2004, 26(1): 48-54.

[57] Gao Quanzhou, Dong Guangrong, Li Baosheng, et al. Evolution of southern fringe of Badain Jaran Desert since late Pleistocene[J]. Journal of Desert Research,1995,15(4):345-352.

[58] Gong Jiadong, Dong Guangrong, Li Sen, et al. Degradation of physical environment and its control in Ejina Oasis at the lower reaches of Heihe river[J].Journal of Desert Research,1998,18(1):44-50.

[59] Hu Chunyuan, Li Yubao, Gao Yong, et al. Realtions of changes of ecological environment and human being activities in Heihe lower reaches[J]. Journal of Arid Land Resources and Environment, 2000, 14 (suppl.):10-14.

[60] Lan Yongchao,kang Ersi,Zhang Jishi,et al. Trends and characteristics on mountainous runoff in Hexi inland arid region[J]. Journal of Desert research,2002,22(2):135-141.

[61] Ma Jinzhu, Wei Hong. The ecological and environmental problems caused by the excessive exploitation and utilization of groundwater resources in the Minqin basin, Gansu Province[J]. Arid Zone Research,2003,20(4):262-265.

[62] Mebus A Geyh, Gu Weizu, Liu yong, et al. Isotopically anomalous groundwater of Alxa plateau, Inner Mongolia[J]. Advances in Water Science,1998, 9(4): 333-337.

[63] Qu Jianjun,Chang Xueli,Dong Guangrong,et al. Fractal behavior of aeolian sand landform in typical Magedune area of Badain Jaran desert[J].Journal of Desert Research,2003,23(4):361-365.

[64] Wang Genxu, Cheng Guodong. Changes of hydrologyand ecological environment during late 50 years in Heihe River Basin[J]. Journal of Desert Research,1998, 18(3): 233-238.

[65] Wang P H. The disputes on water utilization and distribution system in Hexi Corridor of the Qing Dynasty[J]. Journal of Agriculture in Present and Past,2004,(2):60-67.

[66] Wu Yanqing, Mu Fuqiang, He Yixian, et al. Analysis of the transformation path between stream flow and groundwater from Dingxin to Shaomaying in Heihe River, Catchment west China[J]. Journal of Glaciology and Geocryology, 2000,22(1):73-77.

[67] Wu Yi, Guo Jianqiang, Zhu Qingjun, et al. Geophysical prospecting techniques for the interchange between bedrock water and plan water[J]. Acta Geoscientic Sinica,2004,25(3):369-372.

[68] Wuennemann B, Pachur H J, Zhang H. Climatic and environmental changes in the deserts of Inner Mongolia, China, since the Late Pleistocene[C]Alsharhan A S, et al, eds. Quaternary Deserts and Climatic Changes. Balkema,1998:381-394.

[69] Yan Mancun, Wang Guangqian, Li Baosheng, et al. Formation and growth of high Megadunes in Badain Jaran desert[J]. Acta Geogrphica Sinica,2001,56(1):83-91.[闫满存,王光谦,李保生,.巴丹吉林沙漠高大沙山的形成发育研究[J].地理学报,2001,56(1):83-91.]

[70] Yang Xiaoping. Landscape types and its formation mechanism in the Badain Jaran Desert and its surrounding areas[J]. Journal of Desert Research, 2000, 20(2):166-170.

[71] Yang Xiaoping. Water chemistry of the lakes in the Badain Jaran desert and their Holocene evolution[J]. Quaternary Sciences, 2002,22(2):97-104.

[72] Zhang Huiling, Yang Xiaoling, Liu Mingchun, et al. Climate variation in eastern Hexi corridor and countermeasures for utilizing climatic resources[J]. Meteorological Science and Technology, 2004, 32(2):101-104.

[73] Ma Yuzhen, Zhang Hucai, Li Jijun, et al. Wünnemann, A study on the palynoflora and climatic environment during Late Pleistocene in Tengger Desert[J]. Acta Botanica Sinica in Chinese with English abstract,1998,40(9):871-879.

[74] Peng Jinan, Zhang Hucai, Ma Yuzhen. Late Pleistocene limnic ostracods and their environmental significance in the Tengger Desert, northwestern China[J]. Acta Micropalaeontologica Sinica,1998, 15(1):22-30.

[75] Wünnemann B, Pachur H J, Li Jijun, et al. Chronologie der pleistoz nen undholoz nen Seepiegelschwankungen des Gaxun Nur/Sogo Nur und Baijian Hu, Innere Mongolei, NW-China[J]. Petermanns Geographische Mitteilungen, 1998, 142:191-206.

[76] Feng Zhaodong, Chen Fahu, Zhang Hucai, et al. Contribution to global change of Mongolian Plateau and Loess Plateau in the Last Glaciation and Interglacial periods[J]. Journal of Desert Research,2000,20(2):172-177.

[77] Zhang H C, Ma Yuzhen, Bernd Wnnemann, et al. Abrupt climate changes during last glacial period in NW China[J]. Geophysical Research Letters,2001,28(16):3 203-3 206.

[78] Zhang H C, Bernd W nnemann, Ma Yuzhen, et al. Lake level and climate change between 42 000 and 18 000 14C years BP in Tengger desert, NW China[J]. Quaternary Research, 2002, 58:62-72.

[79] Zhang Hucai, Ma Yuzhen, Pen Jinlan, et al. Palaeolake and palaeoenvironment between 42-18ka BP in Tengger Desert, NW China[J]. Chinese Science Bulletin,2002, 47(23):1 946-1 956.

[80] Ma Yuzhen, Zhang Hucai, Pachur H J, et al. Late Glacial and Holocene vegetation history and paleoclimate of the Tengger Desert, northwestern China[J]. Chinese Science Bulletin,2003,48(14):1 457-1 463.

[81] Zhang H C, Pachur H J, W nnemann B, et al. Late Quaternary development and levels of palaeolakes in Tengger desert, NW China[J]. Palaeogeoraphy, Palaeoclimatology, Palaeoecology,2004, 211:41-58.

[82] Ma Yuzhen, Zhang Hucai, Pachur Hans J, et al. Modern Pollen-Based Interpretations of the Middle Holocene Paleoclimate (8500 to 3000yr cal BP) in the Southern margin of the Tengger Desert, NW China[J]. The Holocene,2004, 14(6):841-850.

[83] Shi Yafeng, Yu Ge, Liu Xiaodong, et al. Reconstruction of the 30/40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169:69-83.

[84] Shi Yafeng, Jia Yulian, Yu Ge, et al. Features, impacts and causes of the high temperature and large precipitation event in the Tibetan Plateau and its adjacent area during 40/30 ka BP[J]. Journal of Lake Sciences,2002,14(1):1-11.

[85] Shi Yafeng, Yu Ge. Warm-humid climate and transgressions during 40/30 ka BP and their potential mechanisms[J]. Quaternary Sciences,2003,1:1-11.

[86] Yang Bao, Shi Yafeng. Warm-humid climate in northwest China during the period of 40/40 ka BP geological records and origin[J]. Quaternary Sciences,2003,1:60-68.

[1] 冯起,司建华,李建林,席海洋. 胡杨根系分布特征与根系吸水模型建立[J]. 地球科学进展, 2008, 23(7): 765-772.
[2] 马金珠,黄天明,丁贞玉,W.M.Edmunds. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9): 922-930.