地球科学进展 ›› 2006, Vol. 21 ›› Issue (5): 521 -531. doi: 10.11867/j.issn.1001-8166.2006.05.0521

综述与评述 上一篇    下一篇

地表剥蚀、下地壳流变与造山作用研究进展
张新钰,季建清,韩宝福,陈建军,余绍立   
  1. 北京大学地球科学与空间学院造山带与地壳演化实验室,北京 100871
  • 收稿日期:2005-10-19 修回日期:2006-04-12 出版日期:2006-05-15
  • 通讯作者: 张新钰 E-mail:xinyuzhang@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目“喜马拉雅中段与南迦巴瓦构造结变质变形剖面的对比研究”(编号:40472100);国家自然科学基金重点项目“强烈汇聚区大陆岩石层结构重组及其圈层相互作用”(编号:40234049)资助.

Research Advances in Erosion, Rheology of the Lower Crust and Orogeny

Zhang Xinyu,Ji Jianqing,Han Baofu,Chen Jianjun,Yu Shaoli   

  1. Laboratory of Orogenic Belts and Crustal Evolution , School of Earth and Space Sciences, Peking University, Beijing 100871,China
  • Received:2005-10-19 Revised:2006-04-12 Online:2006-05-15 Published:2006-05-15

岩石圈的流变特性研究已经成为固体地球科学研究中的重要领域,是地球科学新理论、新观点的重要渊源。最近的研究表明,下地壳普遍存在的韧性流是造山作用的重要制约因素。在下地壳物质层流变作用机制的调节下,地表剥蚀作用并不仅仅是传统意义上地表夷平的因素,它还能打破地壳动力学和热力学平衡,引起地壳内物质和结构的重置,进而促成山脉的加剧隆升;地表剥蚀作用的强度既受控于造山带的抬升,也受制于地球外圈层(大气圈、水圈、生物圈)。以天山山脉和喜马拉雅山山脉的隆起、喜马拉雅山山脉的变质作用以及相关的构造活动为例,说明在造山过程中,尽管传统意义上的造山作用与地球内部动力过程,即构造作用有密切联系,但是与构造运动的时空尺度不同,地表剥蚀作用也能够在相对较小的时空尺度内,通过影响和控制造山带下地壳的韧性流动,成为地壳抬升和造山带构造演化的重要动力因素。对地壳的流变特性和变质变形研究是当前地球系统科学研究的一个重要切入点。

As one of the up-to-date frontiers of earth science, The research on lithosphere rheology has become an essential field in solid-earth research. Recent progresses show that the widely distributed ductile flow in the lower crust is one of the most important constraints in orogeny. Being controlled by the rheology of the lower crust, erosion may level off the topography, and can break the balance of kinetics and thermodynamics inside of the crust therefore rebuild the structure and component of the curst. the uplift process of the mountains is then enhanced; we believe that the rate of the exhumation is controlled by both the uplift of orogen and the outer spheres of the earth(atmosphere, hydrosphere). In this paper, as typical examples, the rapid uplift of the Tien-Shan and the Himalayas, the metamorphism and tectonics of the Himalayas.was discussed, our conclusion is that although traditional orogeny has a close relationship with tectonics,erosion can effectively control the ductile flow in the lower crust during the development of a mountain in a small time and space scale, and the coupling mechanism between erosion and ductile flow in the lower crust is crucial for crust uplift and tectonic evolution of great mountain ranges. The research on lithosphere rheology and deformation and metamorphism is an important cutin point of earth system science.

中图分类号: 

[1] Kurt Stuwe, Terence D Barr. On uplift and exhumation during convergence[J]. Tectonics, 1998, 17:80-88.

[2] Roger LeB Hooke. Time constant for equilibration of erosion with tectonic uplift[J]. Geological Society of America, 2003, 31(7):621-624.

[3] Summerfield M A, Hulton N J. Natural control on fluvial denudation rates in major world drainage basins[J]. Journal of Geophysical Research,1994, 99:13 871-13 883.

[4] Feilding E J. Tibet uplift and erosion[J].Tectonophysics, 1996, 260:55-84.

[5] Zeitler P K, Nanga Parbat Working Group. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism[J].Geological Society of America,2001,11:4-8.

[6] Sibson R H. Frictional constraints on thrust, wrench and normal faults[J]. Nature, 1974, 249 : 542-544.

[7] Kirby S H. Rheologyofthelithosphere[J]. Reviews of Geophysics and Space Physics,1983, 21:1 458-1 487.

[8] Ranalli G, Murphy D C. Rheological stratification of the lithosphere[J]. Tectonophysics,1987, 132:281-295.

[9] Bodri B, Iizuka S. Geothermal and rheological implications of intracontinenta earthquakes beneath the Kan-to-Tokai region[J]. Central Japan Tectonophysics,1991,194:337-347.

[10] Ranalli G. Rheology of the lithosphere in space and time[C]Burg J P, Ford M, eds. Orogeny Through Time. Landon:The Geological Society,1997:19-37.

[11] Kruse S, McNutt M, PhippsMorgan J, et al. Lithospheric extension near Lake Mead: A model for ductile flow in the lower crust[J]. Journal of Geophysical Research,1991, 96:4 435-4 456.

[12] McQuarrie N, Rodgers D W. Subsidence of volcanic basin by flexture and lower crustal flow:The eastern Snake Plain, Idiho[J]. Tectonics, 1998, 17:203-220.

[13] king G C, Stein R S, Rundle J B. The growth of geological structures by repeated earthquakes,1,Conceptual framework[J]. Journal of Geophysical Research,1988, 93:13 307-13 318.

[14] King G C P, Ellis S. The origin of large local uplift in extensional regions[J]. Nature,1990, 348:689-693.

[15] Carter N L, Tsenn M C. Flow properies of continental lithosphere[J]. Tectonophysics, 1987, 136:27-63.

[16] Watts A B, Burov E B. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness[J]. Earth and Planetary Science Letters,2003,213:113-131.

[17] Hyndman R D, Shearer P J. Water in the lower continental crust:Modeling magnetitelluric and seismic reflection results[J]. Geophysical Journal International,1989, 98:343-365.

[18] Leven J H, Finlayson D M, Wright C, et al. Seismic reflections from the lower crust around Britain[J]. Geology Society London Special publish,1986,24:11-22.

[19] Reston T J. The lower crust and the extension of the continental lithosphere:Kinematic analysis of BIRPS deep seismic data.tectonics,1990,9:1 235-1 248.

[20] Quinlan G. Relationship between deeper lithospheric processes and near surface tectonics of basin[J]. Tectonophysics, 1993, 226:217-225.

[21] Li Dewei. On continental tectonics and its dynamics[J]. Earth Science,1995, 20(1):19-26. [李德威. 再论大陆构造与动力学[J]. 地球科学——中国地质大学学报, 1995, 20(1):19-26.]

[22] Li Dewei, Ji Yunlong. Laminar flow in the lower continental crust and its significance for continental dynamics[J]. Seismology and Geology,2000,22(1):89-96.[李德威,纪云龙.大陆下地壳层流作用及其大陆动力学意义[J].地震地质, 2000,22(1):89-96.]

[23] Zhao Wenjin, Nelson K D, Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature,1993,366:557-559.

[24] Brace W F, Kohlstedt D L. Limits on lithospheric stress imposed by laboratory experiments[J]. Journal of Geophysical Research, 1980, 85:6 248-6 252.

[25] Wang J N, Hobbs B E, Shimamoto A Ord T, et al. Newtonian dislocation creep in quartzites:Implications for the rheology of the lower crust[J]. Science,1994,265:1 204-1 206.

[26] He Jiankun,Liu Jinzhao. Lower-crust ductile flow and its dynamical relation with syn-collision crustal extension in orogenic belt[J]. Chinese Journal of Geophysics,2002,45(4):487-495.[何建坤,刘金朝.下地壳流变与造山带同挤压期地壳伸展的动力学关系[J]. 地球物理学报,2002,45(4):487-495.]

[27] Kirby S H, Kronenberg A K. Rheology of the lithosphere:Selectedtopics[J]. Reviews of Geophysics,1987:251 219-251 244.

[28] Turcotte D L, Schubert G. Geodynamics: Applications of Continement Physics to Geological Problems[M]. New York:John Wiley,1982.

[29] Willams C A, Richardson R M. A rheologically layered three-dimensional model of the San Andreas fault in central and southern California[J]. Journal of Geophysical Research,1991,96:16 597-16 623.

[30] Bird P. Lateral extrusion of lower crust from under high topography in the isostatic limit[J]. Journal of Geophysical Research, 1991,96:10 275-10 286.

[31] Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,1997, 276:788-790.

[32] Gratton J. Crustal shortening, root spreading, isostasy, and the growth of orogenic belts: A dimensional analysis[J]. Journal of Geophysical Research,1989,94:15 627-15 634.

[33] Adams J. Contemporary uplift and erosion of the Southern Alps, New Zealand [J]. Geology, 1980, 91:1-114.

[34] Koons P O. The topographic evolution of collisional mountain belts: A numerical look at the Southern Alps, New Zealand[J]. American Journal of Science,1989,289:1 041-1 069.

[35] Koons P O. Two-sided orogen: Collision and erosion from the sandbox to the Southern Alps, New Zealand[J]. Geology, 1990, 18:679-682.

[36] Peter Molnar, Philip England. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346:29-34.

[37] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Review Article, 1992, 359:117-122.

[38] Ahnert F. Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins[J]. American Journal of Science, 1970, 268:243-263.

[39] Pinet P, Souriau M. Continental erosion and large-scale relief[J]. Tectonics, 1988, 7:563-582.

[40] Leeder M R. Denudation, vertical crustal movements and sedimentaly basin infill[J]. Geologische Rundschau, 1991, 80(2):441-458.

[41] Burbank D W. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin[J]. Nature,1992,357:680-683.

[42] Wdowinski S, Axen G J. Isostatic rebound due to tectonic denudation: A viscous flow model of a layered lithosphere[J]. Tectonics, 1992, 11:303-315.

[43] Westaway R. Evidence for dynamic coupling of surface processes with isostatic compensation in the lower crust during active extension of western Turkey[J]. Journal of Geophysical Research, 1994, 99:20 203-20 223.

[44] Avouac J P, Burov J P. Erosion as a driving mechanism of intracontinetal mountain growth[J]. Geophysical research, 1996, 101(B8):17 747-17 769.

[45] Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(13):738-742.

[46] Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences. The Evolution of Tienshan[M]. Beijing:Science Press,1986.[中国科学院新疆地理研究所.天山山体演化[M]. 北京:科学出版社,1986.]

[47] Avouac C, Jamieson R A, Nguyen M H, et al. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of Tarim relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research,1993,98:6 755-6 804.

[48] Deng Qidong, Feng Xianyue, Zhang Peizhen, et al. Active Tectonics of Tianshan[M]. Beijing:Seismology Press,2000.[邓启东,冯先岳,张培震,.天山活动构造[M].北京:地震出版社,2000.]

[49] Hendrix M S, Dumitru T A, Graham S A. Late Oligocene early Miocene unroofing in Chinese Tien Shan: An early effect of the India Asia collision[J]. Geology,1994, 22:487-490.

[50] Hendrix M S, Dumitru T A, Graham S A. Sedimentary record and climatic implications of recurrent deformation in the Tien Shan:evidence from Mesozoic strata of the north Tarim, south junggar, and Turpan basins, northwest China[J]. Geological Society of American Bulletin, 1992, 104:53-79.

[51] Kusznir N J. Deep seismic reflections and the deformational mechanics of the continental lithosphere[J]. Journal of Petrology,1988,(Special Lithersphere Issue):63-87.

[52] Hodges K V, Hurtado J M, Whipple K X. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics[J]. Tectonics, 2001, 20(6):799-808.

[53] Schneider D A, Zeitler P K, Kidd W S F, et al. Geochronologic constraints on the tectonic evolution and exhumation of Nanpa, western Himalaya syntaxis Revistied[J]. Geology, 2001, 109:563-583.

[54] Zeitler P K, Chamberlain C P, Smith H A. Synchronous anatexis, metamorphism, rapid denudation at Nanga Parbat, Pakistan Himalaya[J]. Geology, 1993, 21:347-350.

[55] Craw D, Koons P O, Winslow D, et al. Boiling fluids in a region of rapid uplift, Nanga Parbat massif, Pakistan[J]. Earth and Planetary Science Letters,1994, 128:169-182.

[56] Craw D, Chamberlain C P, Zeitler P K, et al. Geochemistry of a dry steam geothermal zone formed during rapid uplift of Nanga Parbat, northern Pakistan[J]. Chemical Geology, 1997, 142:11-22.

[57] Poage M A, Chamberlain C P, Craw D. Massif-wide metamorphism and fluid evolution at Nanga Parbat, northern Pakistan[J]. American Journal of Science, 2000, 300:463-482.

[58] Zeitler P K, the Nanga Parbat Working Group. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism[C]Shroder J F. Himalaya to the Sea:Geology, geomorphology, and the Quaternary. London, Routledge, 1993:184-197.

[59] Winslow D M, Zeitler P K, Chamberlain C P. Direct evidence for a seep geotherm under conditions of rapid denudation, western-Himalaya, Padistan[J]. Geology, 1994, 22:1 075-1 078.

[60] Koons P O. Big mountains, big rivers, and hot rocks: Beyond isostasy[J]. Eos(Translations, American Geophysical Union),1998, 79:908.

[61] Foster G, Kinny P, Vance D, et al. The pre-Tertiary metamorphic history of the Nangan Parbat Haranosh massif, Pakistan Himalaya[J]. Himalayan-Karakorum-Tibetan Workshop Abstract, 1999a, 14:44-45.

[62] Foster G, Kinny P, Vance D, et al. The significance of monazite U-Th-Pb age data in metamorphic assemblages: A combined study of monazite and garnet chronometry[J]. Earth and Planetary Science Letters, 2000,181:327-340.

[63] Schneider D A, Edwards M A, Kidd W S F, et al. Tectonics of Nanga parbat, western-Himalaya: Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure[J]. Geology, 1999a, 27:999-1 002.

[64] Smith H A, Chamberlain C P, Zeitler P K, et al. Documentation of Neogene regional metamorphism in the Himalayans of Pakistan using U-Pb in monazite[J]. Earth and Planetary Science Letters,1992, 113:93-105.

[65] Zeitler P K. Cooling history of the NW Himalaya, Pakistan[J]. Tectonics, 1985, 4:127-151.

[66] Winslow D M, Zeitler P K, Chamberlain C P. Geochronologic constraints on syntaxial development in the NPHM, Palostam[J]. Tectonics,1996,15:1 292-1 308.

[1] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[2] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[3] 张兆永, 吉力力 , 阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[4] 窦燕,陈曦. 基于站点的中国天山山区积雪要素变化研究[J]. 地球科学进展, 2011, 26(4): 441-448.
[5] 李丽敏,刘祥文,谢战军.  大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
[6] 李永军,杨高学,张天继,栾新东,王晓刚. 西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J]. 地球科学进展, 2009, 24(4): 420-427.
[7] 杨晓志,夏群科,于慧敏,郝艳涛. 大陆下地壳高电导率的起源:矿物中的结构水[J]. 地球科学进展, 2006, 21(1): 31-38.
[8] 中国科学院学部"西部生态环境建设与可持续发展"西北干旱区咨询组. 绿桥系统——天山北坡与准噶尔荒漠新产业带建设和生态保育[J]. 地球科学进展, 2003, 18(6): 831-836.
[9] 向芳,王成善. 质量平衡法——定量恢复新生代青藏高原造山作用[J]. 地球科学进展, 2001, 16(2): 279-283.
[10] 肖文交,周火兆秀,杨振宇,赵西西. 大别—郯庐—苏鲁造山带复合旋转拼贴作用[J]. 地球科学进展, 2000, 15(2): 147-153.
阅读次数
全文


摘要