地球科学进展 ›› 2006, Vol. 21 ›› Issue (1): 31 -38. doi: 10.11867/j.issn.1001-8166.2006.01.0031

研究论文 上一篇    下一篇

大陆下地壳高电导率的起源:矿物中的结构水
杨晓志,夏群科,于慧敏,郝艳涛   
  1. 中国科技大学地球和空间科学学院,中国科学院壳幔物质与环境实验室,安徽 合肥 230026
  • 收稿日期:2005-03-04 修回日期:2005-07-14 出版日期:2006-01-15
  • 通讯作者: 杨晓志 E-mail:xzyang@mail.ustc.edu.cn
  • 基金资助:

    国家自然科学基金项目“中国东部地幔交代作用稳定同位素(O-H-C)示踪”(编号:40473007); 教育部“新世纪优秀人才支持计划”和中国科学院研究生创新课题资助.

The Possible Effect of Hydrogen on the High Electrical Conductivity in the Lower Continental Crust

Yang Xiaozhi, Xia Qunke, Yu Huimin, Hao Yantao   

  1. Key Laboratory of Crust-Mantle Materials and Environments, CAS, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
  • Received:2005-03-04 Revised:2005-07-14 Online:2006-01-15 Published:2006-01-15

大地电磁学的测定结果显示,大陆下地壳可能具有异常高的电导率(10-4~10-2 S/m)。认识这种异常现象的起源,对于更好地理解地球内部的结构和一些典型的地质学过程具有重要的意义。虽然目前有多种机制试图对大陆下地壳高电导率现象进行解释,但是争论依然激烈,已有的模型(含水矿物模型、孔隙流体模型、颗粒边界石墨膜模型和正空穴电子对模型等)都不能提供令人信服的答案。对安徽女山下地壳麻粒岩包体中的主要组成矿物(斜长石、斜方辉石、单斜辉石)的MicroFTIR分析表明:这三种矿物普遍含有结构水,含量分别可以高至~1 700×10-6、~1 600×10-6和~2 400×10-6。麻粒岩中结构水的存在可能会对大陆下地壳的电导率分布产生重要的影响,从而可能为认识其起源提供一个新的解释方法。

Magnetolluric measurements show that the lower continental crust has remarkably high electrical conductivity which is about 10-4~10-2 S/m. Tracing the origin of this phenomenon will have important implications to understand the structure and some typical geological processes in the interior of the Earth. Many mechanisms, among which the most probable candidates are models of hydrous minerals, interconnected saline pore fluids, interconnected grain boundary films of graphite and positive hole pairs, were presented for the explaination. However, none of them is totally reasonable and controversy still exists. Micro-FTIR analysis performed on minerals (plagioclase, clinopyroxene and orthopyroxene) in granulite xenoliths from Nushan demonstrated that all these minerals contained water incorporated in the structure as OH with the content (H2O wt.) up to ~1700×10-6 for plagioclase, ~1600×10-6 for orthopyroxene and ~2400×10-6 for clinopyroxene, respectively. The water (hydrogen) may have dramatic effect on the electrical conductivity of the lower continental crust and thus provides a more possible explanation.

中图分类号: 

[1] Law L K, Riddihough R P. A geographical relation between geomagnetic variation anomalies and tectonics [J]. Canadian Journal of Earth Science, 1971, 8: 1 094-1 105.

[2] Haak V, Hutton R. Electrical resistivity in continental lower crust [J]. Geological Society, 1986, 24(Special Publication): 35-49.

[3] Jones A G. Electromagnetic images of modern and ancient subduction zones [J]. Tectonophysics,1993, 219: 29-45.

[4] Vanyan L L. Progress report on ELAS project [J]. International Association of Geomagnetism and Aeronomy, News, 1980, 19:73-77.

[5] Shankland T J, Ander M E. Electrical conductivity, temperatures and fluids in the lower crust [J]. Journal of Geophysical Research, 1983, 88:527-538.

[6] Hjelt S E. Regional EM studies in the 80s,1988 [J]. Surveys in Geophysics, 1988, 9: 349-387.

[7] Jones A G. Electrical conductivity of the continental lower crust [A]. In: Fountain D M, Arculus R J, Kay R W,eds. Continental Lower Crust [C]. Amsterdam: Elsevier, 1992:81-143.

[8] Hyndman R D, Vanyan L L, Marquis G, et al. The origin of electrically conductivity lower continental crust: Saline water or graphite [J]. Physics of the Earth and Planetary Interiors, 1993, 81: 325-345.

[9] Stesky R S, Brace W F. Eletrical conductivity of serpentinised rocks to 6 kbars [J]. Journal of Geophysical Research, 1973, 98: 4 301-4 310.

[10] Van Zijl J S V. The relationship between the deep electrical resistivity structure and tectonic provinces in southern Africa. Part 1: Results obtained by Schlumberger soundings [J]. Transactions of the Geological Survey of South Africa, 1978, 81: 129-142.

[11] Duba A, Shankland T J. Free carbon and electrical conductivity in the Earth's mantle [J]. Journal of Geophysical Research Letters, 1982, 9: 1 271-1 274.

[12] Frost B R, Fyfe W S, Tazaki K, et al. Grain boundary graphite in rocks and omplications for high electrical conductivity in the lower crust [J]. Nature,1989, 340: 134-136.

[13] Glover P W J, Vine F J. Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures [J]. Nature, 1992, 360: 723-726.

[14] Glover P W J, Vine F J. Electrical conductivity of the continental crust [J]. Geophysical Research Letters, 1994, 21(22): 2 357-2 360.

[15] Katsube J T, Mareschal M. Petrophysical model of deep electrical conductors: Graphite lining as a source of its disconnection due to uplife [J]. Journal of Geophysical Research, 1993, 98: 8 019-8 030.

[16] Hyndman R D, Shearer P M. Water in the lower continental crust: Modeling magnetotelluric and seismic reflection results [J]. Geophysical Journal of International, 1989, 98: 343-365.

[17] Marquis G, Hyndman R D. Geophysical support for aqueous fluids in the deep crust: Seismic and electrical relationships [J]. Geophysical Journal of International, 1992, 110: 91-105.

[18] Freund F. On the electrical conductivity structure of the stable continental crust [J]. Journal of Geodynamics, 2003, 35: 353-388.

[19] Rudnick R L. Xenoliths-Samples of the lower continental crust [A]. In: Fountain D M, Arculus R, Kay R W, eds. Continental Lower Crust [C]. Amsterdam: Elservier, 1992:269-316.

[20] Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective [J]. Reviews of Geophysics, 1995, 33(3): 267-309.

[21] Rudnick R L, Gao S. Composition of the continental crust [A]. In: Treatise on the Geochemistry The Crust[C]. Oxford: Elsevier-Pergamon, 2003:1-64.

[22] Bell D R, Rossman G R. Water in earthis mantle: The role of nominally anhydrous minerals [J]. Science, 1992, 255: 1 391-1 397.

[23] Rossman G R. Studies of OH in nominally anhydrous minerals [J]. Physics and Chemistry of Minerals, 1996, 23: 299-304.

[24] Ingrin J, Skogby H. Hydrogen in nomainally anhydrous uppermantle minerals:Concentration levels and implications [J]. European Journal of Mineralogy, 2000, 12: 543-570.

[25] Karato S. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 1990, 347: 272-273.

[26] Duba A, Mathez E A, Shankland T J. Workshop addresses crustal carbon and its effect on electrical conductivity [J]. EOS Transactions, American Geophysical Union, 2001, 82(40): 456.

[27] Fuji-ta K, Katsura T, Tainosho Y. Electrical conductivity measurement of granulite under mid- to lower crustal pressure-temperature conditions [J]. Geophysical Journal of International, 2004, 157: 79-86.

[28] Yardley B W D, Valley J W. Reply to “Comment on the the petrologic case for a dry lower crust”[J]. Journal of Geophysical Research, 2000, 105:6 065-6 068.

[29] Glover P W J. Graphite and electrical conductivity in the lower continental crust: A review [J]. Physics and Chemistry of Minerals, 1996, 21: 279-287.

[30] Klemperer S L, the BIRPS Group. Reflectivity of the crystalline lower crust:Hypotheses and tests [J]. Geophysical Journal of the Royal Astronomical Society,1987, 89: 217-222.

[31] Rasmussen T M. Magnetotellurics in southwestern Sweden: Evidence for electrical anisotropy in the lower crust? [J]. Journal of Geophysical Research, 1988, 93: 7 897-7 907.

[32] Kellett R, Mareschal M, Kurtz R D. A model of lower crustal anisotropy for the Potiac Subprovince of the Canadian Shield [J]. Geophysical Journal International, 1992, 111: 141-150.

[33] Mareschal M, Kurtz R D, Bailey R C. A review of electromagnetic investigations in the Kapuskasing uplift and surrounding regions: Electrical properties of key rocks [J]. Canadian Journal of Earth Science,1994, 31:1 042-1 051.

[34] Yardley B W. Is there water in the deep continental crust? [J]. Nature, 1986, 323: 111.

[35] Shankland T J. A case of two conductors [J]. Nature, 1989, 340: 102.

[36] Yardley B W D, Valley J W. The petrologic case for a dry lower crust [J]. Journal of Geophysical Research, 1997, 102: 12 173-12 185.

[37] Hermance J F. The electrical conductivity of materials containing partial melt [J]. Geophysical Research Letters, 1979, 6:613-616.

[38] Duba A, Heikamp S, Meurer W, et al. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity [J]. Nature, 1994, 367:59-61.

[39] Quist A S, Marshall W L. Electrical conductances of aqueous sodium chloride solutions from 0 to 800 and at pressures to 4000 bars [J]. Journal of Physics and Chemistry of Solids, 1968, 72: 684-703.

[40] Vanyan L L, Shilovski A P. Fluids in the lower crust inferred from electromagnetic data [J]. Geophysical Monograph American Geophysical Union, 1989, 51: 243-246.

[41] Nesbitt B E. Electrical resistivities of crustal fluids [J]. Journal of Geophysical Research, 1993, 98: 4 301-4 310.

[42] Winkler K W, Nur A. Seismic attentuation: Effects of pore fluids and frictional sliding [J]. Geophysics, 1982, 47: 1-15.

[43] Hyndman R D, Klemperer S L. Lower-crustal porosity from electrical measurements and inferences about composition from seimic velocities [J]. Geophysical Research Letters, 1989, 16: 255-258.

[44] Warner M. Basalts, water, or shear zones in the lower continential crust? [J]. Tectonics, 1990, 173: 163-174.

[45] Warner M. Free water and seismic reflectivity in the lower continental crust [J]. Journal of Geophysics and Engineering, 2004,(1):88-101.

[46] Yardley B W D. Effect of cooling on the water content and mechanical behaviour of metamorphosed rocks [J]. Geology, 1981, 9: 405-408.

[47] Connolly J A D, Thompson A B. Fluid and enthalpy production during regional metamorphism [J]. Contribution to Mineralogy and Petrology, 1989, 102: 347-366.

[48] Markl G, Bucher K. Composition of fluids in the lower ctrst inferred from metamorphic salt in lower crustal rocks [J]. Nature, 1998, 391: 781-783.

[49] Newton R C, Simth J V, Windley B F. Carbonic metamorphism, granulite and crustal growth [J]. Nature, 1980, 288: 45-50.

[50] Newton R C. Fluids of granulite facies metamorphism [A]. In: Walther J V, Wood B J, eds. Advances in Physical Geochemistry [C]. Berlin: Springer, 1986:36-60.

[51] Thompson A B. Fluid-absent metamoprhism [J]. Journal of the Geological Society, London, 1983, 140: 533-547.

[52] Mareschal M, Fyfe W S, Percival J, et al. Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity [J]. Nature 1992, 357: 674-676.

[53] Dunn S R, Valley J W. Calcite-graphite isotope thermometry: A test for polymetamorphism in marble, Tudor grbbro aureole, Ontario, Canada [J]. Journal of Metamorphic Geology, 1992, 10: 487-501.

[54] Freund F, Takeuchi A, Lau B W S, et al. Stress-induced changes in the electrical conductivity of igneous rocks and the generation of ground currents [J]. Terrestrical, Atmospheric and Oceanic Sciences 2004, 15(3): 437-467.

[55] Libowitzky E, Beran A. IR spectroscopic characterization of hydrous species in minerals[A]. In: Beran A, Libwitzky E,eds. Spectroscopic Methods in Mineralogy [C]. Eotvos: Eotvos University Press, 2004:1-64.

[56] Huang X L, Xu Y G, Liu D Y. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton [J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 127-149.

[57] Woods S C, Mackwell S, Dyar D. Hydrogen in diopside: Diffusion profiles [J]. American Mineralogist, 2000, 85: 480-487.

[58] Stalder R, Skogby H. Hydrogen diffusion in natural and synthetic orthopyroxene [J]. Physics and Chemistry of Minerals, 2003, 30: 12-19.

[59] Kronenberg A K, Yund R A, Rossman G R. Stationary and mobile hydrogen defects in potassium feldspar [J]. Geochimica et Cosmochimica Acta, 1996, 60: 4 075-4 094.

[60] Katayama I, Nakashima S. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle[J]. American Mineralogist, 2004, 88: 229-234.

[61] Mackwell S J, Kohlstedt D L, Paterson M S. The role of water in the deformation of olivine single crystals [J]. Journal of Geophysical Research, 1985, 90: 11 319-11 333.

[62] Karato S, Paterson M, Fitzgerald J. Rheology of synthetic olivine aggregates-influence of grain-size and water [J]. Journal of Geophysical Research, 1986, 91: 8 151-8 176.

[63] Skogby H, Rossman G R. OH- in pyroxene: An experimental study of incorporation mechanisms and stability [J]. American Mineralogist,1989, 74: 1 059-1 069.

[1] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[2] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[3] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[4] 李丽敏,刘祥文,谢战军.  大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
[5] 张心昱,孙晓敏,袁国富,朱治林,温学发,康新斋,徐丽君. 中国生态系统研究网络水体pH和矿化度监测数据初步分析[J]. 地球科学进展, 2009, 24(9): 1042-1050.
[6] 李向应,李忠勤,陈正华,赵中平,尤晓妮,朱宇漫. 天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程[J]. 地球科学进展, 2006, 21(5): 487-495.
[7] 夏群科,陈道公,支霞臣. 名义上无水的地幔矿物中结构水的研究进展[J]. 地球科学进展, 1999, 14(5): 452-457.
[8] 简平,杨巍然. 造山带构造年代学基本问题——论同位素体系与变质作用的关系[J]. 地球科学进展, 1998, 13(5): 452-457.
[9] 翟明国 郭敬辉 涂湘林. 中国华北高压基性麻粒岩的发现及其对深部地壳研究的意义[J]. 地球科学进展, 1992, 7(6): 60-.
阅读次数
全文


摘要