[1] Law L K, Riddihough R P. A geographical relation between geomagnetic variation anomalies and tectonics [J]. Canadian Journal of Earth Science, 1971, 8: 1 094-1 105.
[2] Haak V, Hutton R. Electrical resistivity in continental lower crust [J]. Geological Society, 1986, 24(Special Publication): 35-49.
[3] Jones A G. Electromagnetic images of modern and ancient subduction zones [J]. Tectonophysics,1993, 219: 29-45.
[4] Vanyan L L. Progress report on ELAS project [J]. International Association of Geomagnetism and Aeronomy, News, 1980, 19:73-77.
[5] Shankland T J, Ander M E. Electrical conductivity, temperatures and fluids in the lower crust [J]. Journal of Geophysical Research, 1983, 88:527-538.
[6] Hjelt S E. Regional EM studies in the 80s,1988 [J]. Surveys in Geophysics, 1988, 9: 349-387.
[7] Jones A G. Electrical conductivity of the continental lower crust [A]. In: Fountain D M, Arculus R J, Kay R W,eds. Continental Lower Crust [C]. Amsterdam: Elsevier, 1992:81-143.
[8] Hyndman R D, Vanyan L L, Marquis G, et al. The origin of electrically conductivity lower continental crust: Saline water or graphite [J]. Physics of the Earth and Planetary Interiors, 1993, 81: 325-345.
[9] Stesky R S, Brace W F. Eletrical conductivity of serpentinised rocks to 6 kbars [J]. Journal of Geophysical Research, 1973, 98: 4 301-4 310.
[10] Van Zijl J S V. The relationship between the deep electrical resistivity structure and tectonic provinces in southern Africa. Part 1: Results obtained by Schlumberger soundings [J]. Transactions of the Geological Survey of South Africa, 1978, 81: 129-142.
[11] Duba A, Shankland T J. Free carbon and electrical conductivity in the Earth's mantle [J]. Journal of Geophysical Research Letters, 1982, 9: 1 271-1 274.
[12] Frost B R, Fyfe W S, Tazaki K, et al. Grain boundary graphite in rocks and omplications for high electrical conductivity in the lower crust [J]. Nature,1989, 340: 134-136.
[13] Glover P W J, Vine F J. Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures [J]. Nature, 1992, 360: 723-726.
[14] Glover P W J, Vine F J. Electrical conductivity of the continental crust [J]. Geophysical Research Letters, 1994, 21(22): 2 357-2 360.
[15] Katsube J T, Mareschal M. Petrophysical model of deep electrical conductors: Graphite lining as a source of its disconnection due to uplife [J]. Journal of Geophysical Research, 1993, 98: 8 019-8 030.
[16] Hyndman R D, Shearer P M. Water in the lower continental crust: Modeling magnetotelluric and seismic reflection results [J]. Geophysical Journal of International, 1989, 98: 343-365.
[17] Marquis G, Hyndman R D. Geophysical support for aqueous fluids in the deep crust: Seismic and electrical relationships [J]. Geophysical Journal of International, 1992, 110: 91-105.
[18] Freund F. On the electrical conductivity structure of the stable continental crust [J]. Journal of Geodynamics, 2003, 35: 353-388.
[19] Rudnick R L. Xenoliths-Samples of the lower continental crust [A]. In: Fountain D M, Arculus R, Kay R W, eds. Continental Lower Crust [C]. Amsterdam: Elservier, 1992:269-316.
[20] Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective [J]. Reviews of Geophysics, 1995, 33(3): 267-309.
[21] Rudnick R L, Gao S. Composition of the continental crust [A]. In: Treatise on the Geochemistry The Crust[C]. Oxford: Elsevier-Pergamon, 2003:1-64.
[22] Bell D R, Rossman G R. Water in earthis mantle: The role of nominally anhydrous minerals [J]. Science, 1992, 255: 1 391-1 397.
[23] Rossman G R. Studies of OH in nominally anhydrous minerals [J]. Physics and Chemistry of Minerals, 1996, 23: 299-304.
[24] Ingrin J, Skogby H. Hydrogen in nomainally anhydrous uppermantle minerals:Concentration levels and implications [J]. European Journal of Mineralogy, 2000, 12: 543-570.
[25] Karato S. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 1990, 347: 272-273.
[26] Duba A, Mathez E A, Shankland T J. Workshop addresses crustal carbon and its effect on electrical conductivity [J]. EOS Transactions, American Geophysical Union, 2001, 82(40): 456.
[27] Fuji-ta K, Katsura T, Tainosho Y. Electrical conductivity measurement of granulite under mid- to lower crustal pressure-temperature conditions [J]. Geophysical Journal of International, 2004, 157: 79-86.
[28] Yardley B W D, Valley J W. Reply to “Comment on the the petrologic case for a dry lower crust”[J]. Journal of Geophysical Research, 2000, 105:6 065-6 068.
[29] Glover P W J. Graphite and electrical conductivity in the lower continental crust: A review [J]. Physics and Chemistry of Minerals, 1996, 21: 279-287.
[30] Klemperer S L, the BIRPS Group. Reflectivity of the crystalline lower crust:Hypotheses and tests [J]. Geophysical Journal of the Royal Astronomical Society,1987, 89: 217-222.
[31] Rasmussen T M. Magnetotellurics in southwestern Sweden: Evidence for electrical anisotropy in the lower crust? [J]. Journal of Geophysical Research, 1988, 93: 7 897-7 907.
[32] Kellett R, Mareschal M, Kurtz R D. A model of lower crustal anisotropy for the Potiac Subprovince of the Canadian Shield [J]. Geophysical Journal International, 1992, 111: 141-150.
[33] Mareschal M, Kurtz R D, Bailey R C. A review of electromagnetic investigations in the Kapuskasing uplift and surrounding regions: Electrical properties of key rocks [J]. Canadian Journal of Earth Science,1994, 31:1 042-1 051.
[34] Yardley B W. Is there water in the deep continental crust? [J]. Nature, 1986, 323: 111.
[35] Shankland T J. A case of two conductors [J]. Nature, 1989, 340: 102.
[36] Yardley B W D, Valley J W. The petrologic case for a dry lower crust [J]. Journal of Geophysical Research, 1997, 102: 12 173-12 185.
[37] Hermance J F. The electrical conductivity of materials containing partial melt [J]. Geophysical Research Letters, 1979, 6:613-616.
[38] Duba A, Heikamp S, Meurer W, et al. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity [J]. Nature, 1994, 367:59-61.
[39] Quist A S, Marshall W L. Electrical conductances of aqueous sodium chloride solutions from 0 to 800℃ and at pressures to 4000 bars [J]. Journal of Physics and Chemistry of Solids, 1968, 72: 684-703.
[40] Vanyan L L, Shilovski A P. Fluids in the lower crust inferred from electromagnetic data [J]. Geophysical Monograph American Geophysical Union, 1989, 51: 243-246.
[41] Nesbitt B E. Electrical resistivities of crustal fluids [J]. Journal of Geophysical Research, 1993, 98: 4 301-4 310.
[42] Winkler K W, Nur A. Seismic attentuation: Effects of pore fluids and frictional sliding [J]. Geophysics, 1982, 47: 1-15.
[43] Hyndman R D, Klemperer S L. Lower-crustal porosity from electrical measurements and inferences about composition from seimic velocities [J]. Geophysical Research Letters, 1989, 16: 255-258.
[44] Warner M. Basalts, water, or shear zones in the lower continential crust? [J]. Tectonics, 1990, 173: 163-174.
[45] Warner M. Free water and seismic reflectivity in the lower continental crust [J]. Journal of Geophysics and Engineering, 2004,(1):88-101.
[46] Yardley B W D. Effect of cooling on the water content and mechanical behaviour of metamorphosed rocks [J]. Geology, 1981, 9: 405-408.
[47] Connolly J A D, Thompson A B. Fluid and enthalpy production during regional metamorphism [J]. Contribution to Mineralogy and Petrology, 1989, 102: 347-366.
[48] Markl G, Bucher K. Composition of fluids in the lower ctrst inferred from metamorphic salt in lower crustal rocks [J]. Nature, 1998, 391: 781-783.
[49] Newton R C, Simth J V, Windley B F. Carbonic metamorphism, granulite and crustal growth [J]. Nature, 1980, 288: 45-50.
[50] Newton R C. Fluids of granulite facies metamorphism [A]. In: Walther J V, Wood B J, eds. Advances in Physical Geochemistry [C]. Berlin: Springer, 1986:36-60.
[51] Thompson A B. Fluid-absent metamoprhism [J]. Journal of the Geological Society, London, 1983, 140: 533-547.
[52] Mareschal M, Fyfe W S, Percival J, et al. Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity [J]. Nature 1992, 357: 674-676.
[53] Dunn S R, Valley J W. Calcite-graphite isotope thermometry: A test for polymetamorphism in marble, Tudor grbbro aureole, Ontario, Canada [J]. Journal of Metamorphic Geology, 1992, 10: 487-501.
[54] Freund F, Takeuchi A, Lau B W S, et al. Stress-induced changes in the electrical conductivity of igneous rocks and the generation of ground currents [J]. Terrestrical, Atmospheric and Oceanic Sciences 2004, 15(3): 437-467.
[55] Libowitzky E, Beran A. IR spectroscopic characterization of hydrous species in minerals[A]. In: Beran A, Libwitzky E,eds. Spectroscopic Methods in Mineralogy [C]. Eotvos: Eotvos University Press, 2004:1-64.
[56] Huang X L, Xu Y G, Liu D Y. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton [J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 127-149.
[57] Woods S C, Mackwell S, Dyar D. Hydrogen in diopside: Diffusion profiles [J]. American Mineralogist, 2000, 85: 480-487.
[58] Stalder R, Skogby H. Hydrogen diffusion in natural and synthetic orthopyroxene [J]. Physics and Chemistry of Minerals, 2003, 30: 12-19.
[59] Kronenberg A K, Yund R A, Rossman G R. Stationary and mobile hydrogen defects in potassium feldspar [J]. Geochimica et Cosmochimica Acta, 1996, 60: 4 075-4 094.
[60] Katayama I, Nakashima S. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle[J]. American Mineralogist, 2004, 88: 229-234.
[61] Mackwell S J, Kohlstedt D L, Paterson M S. The role of water in the deformation of olivine single crystals [J]. Journal of Geophysical Research, 1985, 90: 11 319-11 333.
[62] Karato S, Paterson M, Fitzgerald J. Rheology of synthetic olivine aggregates-influence of grain-size and water [J]. Journal of Geophysical Research, 1986, 91: 8 151-8 176.
[63] Skogby H, Rossman G R. OH- in pyroxene: An experimental study of incorporation mechanisms and stability [J]. American Mineralogist,1989, 74: 1 059-1 069.
|