地球科学进展 ›› 2002, Vol. 17 ›› Issue (4): 605 -612. doi: 10.11867/j.issn.1001-8166.2002.04.0605

全球变化研究 上一篇    下一篇

中更新世气候转型与100ka周期研究
邬光剑 1,2,潘保田 2,管清玉 2,高红山 2   
  1. 1.中国科学院寒区旱区环境与工程研究所冰芯与寒区环境重点实验室,甘肃 兰州 730000;2. 兰州大学地理系,西部环境教育部重点实验室,甘肃 兰州 730000
  • 收稿日期:2001-11-05 修回日期:2002-01-29 出版日期:2002-12-20
  • 通讯作者: 邬光剑(1972-),男,四川省洪雅县人,博士研究生,主要从事第四纪与冰芯记录研究.E-mail:wugj@ns.lzb.ac.cn E-mail:wugj@ns.lzb.ac.cn
  • 基金资助:

    国家重点基础研究发展规划项目“青藏高原形成演化及其环境、资源效应”(编号:G1998040815)资助.

REVIEW OF STUDIES ON THE MID-PLEISTOCENE CLIMATIC TRANSITION AND THE 100 ka CYCLE

WU Guang-jian 1, 2, PAN Bao-tian 2, GUAN Qing-yu 2, GAO Hong-shan 2   

  1. 1.Key Laboratory of Ice Core and Cold Regions Environment, CAREERI, CAS, Lanzhou 730000, China;2.Department of Geography, Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou 730000, China
  • Received:2001-11-05 Revised:2002-01-29 Online:2002-12-20 Published:2002-08-01

中更新世气候转型是第四纪气候变化中最重要的特征之一,它是指全球气候的主导周期在中更新世时从41ka转变为100ka,且气候波动的幅度也加大。经典的Milankovitch假说不能完全解释中更新世气候转型的原因以及100ka周期在气候记录中的强烈表现,因为太阳辐射与气候记录之间存在着相当的差异,尤其是二者在变化幅度上不匹配。近年来围绕这一转型过程的时代和原因获得了一些新的进展,主要是针对中更新世气候转型的时间、对气候记录中100ka周期的重新检讨以及非太阳辐射因素在这一转型过程中所起的作用。其它可能的转型原因包括大冰盖、温室气体、地球轨道面倾角、冰盖基底、构造隆升等。

The Mid-Pleistocene Climatic Transition (MPT) is one of the most significant characteristics of the Quaternary climatic changes. MPT means the dominant global climate cycle changed from 40 ka to 100 ka during the mid-Pleistocene with higher amplitude. The classical Milankovitch hypothesis can't give a satisfactory explanation for the cause of the MPT and the predominant 100 ka cycle in climate records because of the discrepancy between solar insolation and climate records, especially the unmatched change amplitudes of them. This paper introduce the progresses of this question, such as the time of the MPT, the re-examination on 100 ka cycle in paleoclimatic records, and the role of non-insolation factors, such as the ice sheets, green house gas, ice-sheet's underlying substrate, orbital plane inclination, and tectonic uplift.

中图分类号: 

[1] Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene Evolution: North Hemisphere Ice sheet and North Atlantic Ocean [J]. Paleoceanography, 1989, 4(4): 353-412
[2] Berger W H, Yasuda M K, Bickert T, et al. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program site 806 [J]. Geology, 1994, 22: 463-467.
[3] Raymo M E, Ruddiman W F, Shackleton N J, Oppo D W. Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 Ma[J]. Earth and Planetary Science Letters, 1990, 97: 353-369.
[4] Muller R A, MacDonald G J. Simultaneous presence of orbital inclination and eccentricity in proxy climate records from Ocean Drilling Program Site-806 [J]. 1997, Geology, 25(1): 3-6.
[5] Muller R A, MacDonald G J. Glacial cycles and astronomical forcing [J]. Science, 1997, 277: 215-518.
[6] Clark P U, Alley R B, Pollard D. Northern Hemisphere ice-sheet influences on global climate change [J]. Science, 1999, 286:1 104-1 111.
[7] Dupont L M, Donner B, Schneider R, et al. Mid-Pleistocene environmental change in tropical Africa began as early as 1.05Ma [J]. Geology, 2001, 29(3): 195-198.
[8] Maasch K A. Statistical detection of the mid-Pleistocene transition [J]. Climate Dynamics, 1988, 2: 133-143.
[9] Raymo M E, Oppo D W, Curry W. The Mid-Pleistocene climate transition: A deep sea carbon isotopic perspective [J]. Paleoceanography, 1997, 12(4): 546-559.
[10] Wang R J, Andrea A, Li B H, et al. Abrupt variations of the radiolarian fauna at Mid-Pleistocene climate transition in the South China Sea [J]. Chinese Science Bulletin, 2000, 45(10): 952-955.
[11] Pisias N G, Moore T C Jr. The evolution of Pleistocene climate: A time series approach [J]. Earth and Planetary Science Letters, 1981, 52: 450-458.
[12] Lau K-M, Weng H. Climate signal detection using wavelet transform: how to make a time series sing [J]. Bulletin of the American Meteorological Society, 1995, 76(12): 2 391-2 402.
[13] Park J, Maasch K A. Plio-Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records [J]. Journal of Geophysical Research, 1993, 98: 447-461.
[14] Bolton E W, Maasch K A, Lilly J M. A wavelet analysis of Plio-Pleistocene climate indicators: A new view of periodicity evolution [J]. Geophysical Research Letters, 1995, 22: 2 753-2 756.
[15] Liu Tungsheng, Zhen Mianping, Guo Zhengtang. Initiation and evolution of the Asian Monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia [J]. Quaternary Sciences, 1998, (3): 194-204.[刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,1998,(3): 194-204.]
[16] Liu T S, Ding Z L, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5Ma [J]. Quaternary Science Reviews, 1999, 18:1 205-1 212.
[17] Mudelsee M, Schulz M. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka [J]. Earth and Planetary Science Letters, 1997, 151: 117-123.
[18] Schmieder F, von Dobeneck T, Bleil U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event [J]. Earth and Planetary Science Letters, 2000, 179: 539-549.
[19] Imbrie J, Hays J D, Martinson D B, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta 18O record [A]. In: Berger A, et al,eds. Milankovitch and Climate, Part I [C].Reidel, Netherlands, 1984. 269-305.
[20] Imbrie J, Berger A, Boyle E A, et al. On the structure and origin of major glaciation cycles, 2. The 100 000 year cycle [J]. Paleoceanography, 1993, 8(6): 699-735.
[21] Martinson D G, Pisias W G, Hays J D, et al. Age dating and the orbital theory of the ice age: development of a high resolution 0 to 300 000 year chronostratigraphy [J]. Quaternary Research, 1987, 27: 1-29.
[22] Winograd I J, Coplen T B, Landwehr J M, et al. Continuous 500 ka climate record from vein calcite in Devils Hole, Nevada [J]. Science, 1992, 258:255-260.
[23] Winograd I J, Landwehr J M, Ludwig K R, et al. Duration and structure of the past four interglaciations [J]. Quaternary Research, 1997, 48:141-154.
[24] Imbrie J, Mix A C, Martinson D G. Milankovitch theory viewed from Devils Hole [J]. Nature, 1993, 363: 531-533.
[25] Esat T M, McCulloch M T, Chappell J, et al. Rapid fluctuation in sea level recorded at Huon Peninsula during the penultimate deglaciation [J]. Science, 1999,283: 197-201.
[26] Raymo M E. The timing of major climate terminations [J]. Paleoceanography, 1997, 12(4): 577-585.
[27] Ridgwell A J, Watson A J, Raymo M E. Is the spectral signature of the 100 ka glacial cycle consistent with a Milankovitch origin? [J]. Palaoceanography, 1999, 14(4): 437-440.
[28] Slowey N C, Henderson G M, Curry W B. Direct U-Th dating of marine sediments from the two most recent interglacial periods [J]. Nature, 1996, 383:242-244.
[29] Stirling C H, Esat T M, Lambeck K, et al. Orbital forcing of the Marine Isotope Stage 9 Interglacial [J]. Science, 2001, 291: 290-293.
[30] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399:429-436.
[31] Shackleton N J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity [J]. Science, 2000, 289: 1 897-1 902.
[32] Fischer H, Wahlen M, Smith J, et al. Ice core records of atmospheric CO2 around the last three glacial terminations [J]. Science, 1999, 283: 1 712-1 714.
[33] Monnin E, Indermuhle A, Dallenbach A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291: 112-114.
[34] Mudlsee M. The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka [J]. Earth and Planet Science Letters, 2001, 204:583-589.
[35] Pearson P N, Palmer M R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations [J]. Science, 1999, 284: 1 824-1 826.
[36] Richard A K. Slide into ice age not carbon dioxide's fault? [J]. Science, 1999, 284: 1 743-1 746.
[37] Clark P U, Pollard D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith [J]. Paleoceanography, 1998, 13(1): 1-9.
[38] Muller R A, MacDonald G J. Glacial cycles and orbital inclination [J]. Nature, 1995, 377:107-108.
[39] Manabe S, Terpstra T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments [J]. J Atmos Sci, 1974, 31:3-42 .
[40] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and American west [J]. Journal of Geophysical Research, 1989, 94(D): 18 409-18 427.
[41] Raymo M E, Ruddiman R F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359: 117-122.
[42] Shi Yafeng, Zhen Benxing, Li Shijie, et al. Studies on altitude and climatic environment in the middle and east parts of Tibetan Plateau during Quaternary Maximum Glaciation [J]. Journal of Glaciology and Geocryology, 1995, 17(2): 97-112. [施雅风,郑本兴,李世杰,等. 青藏高原中东部最大冰期的时代、高度与气候环境探讨[J]. 冰川冻土,1995,17(2):97-112.]
[43] Shi Yafeng, Li Jijun, Li Bingyuan, et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic [J], Acta Geographica Sinica, 1999, 54: 10-21.[施雅风,李吉均,李炳元,等. 晚新生代青藏高原隆升与东亚环境变化[J]. 地理学报,1999,54:10-21.]
[44] Flower B P. Overconsolidaed section on the Yermak Plateau, Arctic Ocean: Ice sheet grounding prior to ca.660 ka? [J]. Geology, 1997, 25(2): 147-150.
[45] Spielhagen R F, Bonani G, Elsenhauer A, et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheet [J]. Geology, 1997, 25(9): 783-786.

[1] 金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展, 2007, 22(9): 914-921.
阅读次数
全文


摘要