地球科学进展 ›› 2002, Vol. 17 ›› Issue (4): 613 -616. doi: 10.11867/j.issn.1001-8166.2002.04.0613

全球变化研究 上一篇    下一篇

铁假说和HNLC海区的现场铁加富实验
张武昌,孙松   
  1. 中国科学院海洋研究所,山东 青岛 266071
  • 收稿日期:2001-06-04 修回日期:2001-10-22 出版日期:2002-12-20
  • 通讯作者: 张武昌(1973-),男,山东济南人,博士研究生,主要从事海洋生态学研究.E-mail: w.c.zhang@yeah.net E-mail:w.c.zhang@yeah.net
  • 基金资助:

    中国科学院知识创新工程重要方向项目“南极辐合带—Dome A断面上的全球变化研究”(编号:KZCX2-303);国家自然科学基金项目“渤海生物—物理相互作用的过程研究”(编号:49976032)”资助.

IRON HYPOTHESIS AND THE IN SITU IRON FERTILIZATION EXPERIMENTS IN THE HNLC REGIONS

ZHANG Wu-chang, SUN Song   

  1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2001-06-04 Revised:2001-10-22 Online:2002-12-20 Published:2002-08-01

20世纪90年代,JohnMart in提出的"铁假说(ironhypothesis)"和以此为中心的海洋铁加富实验(ironenrichments)成为海洋科学领域最受瞩目的事件。"铁假说"的主要内容是:铁限制了HNLC海区中浮游生物的生产力,并进而影响了CO2由海洋上层向深层的输出;如果在HNLC海区加入铁,就可以促进浮游植物的生长,消耗掉过剩的 N、P营养盐,加速C从海洋表层向深层输出,最终降低大气中CO2含量,缓解温室效应。在赤道太平洋和南大洋进行的现场加富实验证明,加入铁以后,这些海区的浮游植物生物量增加,N、P等营养盐被消耗。但是,这些实验并没有降低大气中CO2含量。铁假说只被证实了一半。

The iron hypothesis of John Martin and the in situ iron fertilization experiments in the HNLC regions were the most exciting events in the 1990s. Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the “iron hypothesis”. For this reason, it is important to understand the response of pelagic biota and atmospheric carbon dioxide to increased iron supply. Three in situ iron enrichment experiments, IronEx1 and IronEx2 (in eastern equatorial Pacific), SOIREE (in Southern Ocean), were carried out to test the contentious hypothesis. These experiments confirmed that the increased iron supply led to elevated phytoplankton biomass and rates of photosynthesis in surface waters. But downward export of biogenic carbon did not increased. Estimates of the CO2 amount removed from the atmosphere by the iron-related phytoplankton bloom remained uncertain. The “iron hypothesis” is still a hypothesis.

中图分类号: 

[1] Chisholm S W, Morel FMM. Preface[J]. Limnology Oceanogrophic, 1991, 36(8): Ⅰ-Ⅵ.
[2] Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east pacific subarctic[J]. Nature, 1988, 331:341-343.
[3] Martin J H. Glacial-interglacial CO2 change: the iron hypothesis[J]. Paleoceanography, 1990, 5:1-13.  
[4] Watson A, Liss P, Duce R. Design of a small-scale in situ iron fertilization experiment[J]. Limnol Oceanogr, 1991, 36: 1 960-1 965.
[5] Ledwell J R, Watson A J, Law C S. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment[J]. Nature, 1993, 364: 701-703.
[6] Wells M L. Pumping iron in the Pacific[J]. Nature, 1994, 368: 295-296.
[7] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371: 123-129.
[8] Coale K H, Johnson K S, Fitzwater, et al.A massive phytonplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J]. Nature, 1996, 383: 495-501.
[9] Frost B W. Phytoplankton bloom on iron rations[J]. Nature, 1996, 383: 475-476.
[10] Cooper D J,Watson A J, Nightingale P D. Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilization[J]. Nature, 1996, 383: 511-513.
[11] Chisholm S W. Stirring times in the Southern Ocean[J]. Nature, 2000, 407: 685-687.
[12] Boyd P W,Watson A J, Law C S, et al.A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 2000, 407: 695-702.
[13] Watson A J, Bakker D C E, Ridgwell A J, et al. Effects of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2[J]. Nature, 2000, 407: 730-733.
[14] Banse K. Does iron really limit phytoplankton production in the offshore subarctic Pacific?[J]. Limnol Oceanogr, 1990, 35: 772-775.
[15] Peng T H, Broecker W S. Dynamical limitation on the Antarctic iron fertilization strategy[J]. Nature, 1991, 349: 227-229.
[16] Broacker W S, Henderson G M. The sequence of events surrounding termination Ⅱ and their implications for the causes of glacial interglacial CO2 changes[J]. Paleoceanography, 1998, 13: 352-364.
[17] Turner S M, Nightingale P D, Spokes L J, et al. Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment[J]. Nature, 1996, 383: 513-517.

[1] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[2] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[3] 高丽,任鹏飞,周放,郑嘉雯,任宏利. GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J]. 地球科学进展, 2020, 35(7): 715-730.
[4] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[5] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[6] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[7] 张克存, 屈建军, 鱼燕萍, 韩庆杰, 王涛, 安志山, 胡菲. 中国铁路风沙防治的研究进展[J]. 地球科学进展, 2019, 34(6): 573-583.
[8] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[9] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[10] 侯征, 王天意, 于长春, 熊盛青, 邸龙. 基于航磁数据的三维地质建模研究[J]. 地球科学进展, 2018, 33(3): 257-269.
[11] 佟小雪, 王长乐, 彭自栋, 南景博, 黄华, 张连昌. 早前寒武纪BIF原生矿物组成及演化、沉积相模式研究进展[J]. 地球科学进展, 2018, 33(2): 152-165.
[12] 由德方, 王汝建, 肖文申. 北太平洋中部赫斯海隆(Hess Rise) 晚第四纪以来生源组分与粉尘输入的关系及其变化机制 *[J]. 地球科学进展, 2018, 33(11): 1203-1214.
[13] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[14] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[15] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
阅读次数
全文


摘要