地球科学进展 ›› 2018, Vol. 33 ›› Issue (11): 1203 -1214. doi: 10.11867/j.issn.1001-8166.2018.11.1203.

上一篇    

北太平洋中部赫斯海隆(Hess Rise) 晚第四纪以来生源组分与粉尘输入的关系及其变化机制 *
由德方( ), 王汝建 *( ), 肖文申   
  1. 同济大学海洋地质国家重点实验室, 上海 200092
  • 收稿日期:2018-09-07 修回日期:2018-10-15 出版日期:2018-11-20
  • 通讯作者: 王汝建 E-mail:dfyou@tongji.edu.cn;rjwang@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目“重建晚第四纪冰期—间冰期西北冰洋筏冰输运和表层洋流演变历史”(编号:41776187);南北极专项“2017年北极海域海洋地质考察”(编号:CHINARE2017-03-02)资助.

Correlations Between Biogenic Components and Dust Input and Their Change Mechanism on Hess Rise, Central North Pacific, During the Late Quaternary *

Defang You( ), Rujian Wang *( ), Wenshen Xiao   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2018-09-07 Revised:2018-10-15 Online:2018-11-20 Published:2018-12-21
  • Contact: Rujian Wang E-mail:dfyou@tongji.edu.cn;rjwang@tongji.edu.cn
  • About author:

    First author: You Defang(1992-), male, Qingdao City, Shandong Province, Master student. Research areas include polar paleoceanography and micropaleontology. E-mail: dfyou@tongji.edu.cn

  • Supported by:
    Foundation item: Project supported by the National Natural Science Foundation of China "Reconstruction of the glacial-interglacial evolution history of ice raft transport and surface currents during the late quaternary" (No.41776187);The Arctic and Antarctic Special Fund "2017 Arctic Ocean marine geological survey" (No.CHINARE2017-03-02).

对海洋生产力的研究有助于理解大洋碳库的变化,粉尘输入则是影响海洋生产力的重要因子。对德国SO202-INOPEX航次在北太平洋中部赫斯海隆(Hess Rise)钻取的SO202-37-2孔0~251 cm沉积物样品进行了XRF元素扫描,碳酸钙、生物硅、有机碳、浮游有孔虫Globigerina bulloidesGloborotalia inflata氧碳同位素的综合分析,以期探讨该区域的生源组分特征及粉尘输入的变化历史。该孔的地层年代框架基于其浮游有孔虫G. inflata18O、G. bulloides18O与H3571孔G. inflata18O和深海氧同位素曲线LR04-δ18O的对比。结果显示,该孔XRF-Ti/Ca值所代表的陆源粉尘输入强度变化与生物硅含量显著相关,指示粉尘输入刺激了海洋生产力的提高,并呈现出间冰期增强、冰期减弱的特点。究其原因,可能是由于冰期时西风带南移远离物源区,导致粉尘输出减少,西风急流的经向移动控制了该区域海洋生产力的变化。尽管冰期时全球粉尘输出是增多的,但是西风急流的位置变化使得该区域的粉尘沉积记录与其他地区不完全相同。

The study of marine export production is helpful to trace the changes of oceanic and global carbon reservoirs. Dust input is an important factor inspiring marine export production. Measurements of carbonate, Opal, TOC and Corg/N were performed on Core SO202-37-2, which was retrieved from Hess Rise, central North Pacific during the German SO202-INOPEX Expedition, for reconstructing variations of the local export production and dust input. The core age model is constructed via morphologically correlating its foraminifer oxygen isotope record with those of Core H3571 and the LR04 stack. XRF-Ti/Ca can be used as a proxy for dust input and its distribution pattern is consistent with that of Opal content, possibly indicating that dust input may have affected the local export production, i.e. the local export production increased (decreased) with enhancing (declining) dust input during interglacial (glacial) periods. Fluctuations in dust input might be due to southward/northward migration of the Westerly Jet over the dust source regions during interglacial and glacial periods. Although global dust output increased during glacial periods, meridional migration of the Westerly Jet in this area made the distribution pattern of the dust deposition in the study area different from that of other areas.

中图分类号: 

图1 北太平洋中部赫斯海隆SO202-37 [ 9 ](本文)、H3571 [ 5 ]、ODP882 [ 10 ]和V21-146站位 [ 11 ]位置图,以及北太平洋锋面、表层洋流分布 [ 12 , 13 ]和大气环流 [ 14 ]分布
深蓝色实线表示极锋,红色带箭头虚线代表暖流,黑色带箭头虚线代表寒流;深蓝色箭头为西风环流方向,浅蓝色箭头为东亚冬季风风向
Fig.1 Map of climatic and oceanographic settings in the North Pacific showing locations of sites SO202-37 [ 9 ]at Hess Rise (this study), H3571 [ 5 ], ODP882 [ 10 ] and V21-146 [ 11 ] and fronts, surface currents [ 12 , 13 ] and atmospheric circulation [[ 14 ]
Dark blue lines show respectively subarctic and subtropical fronts, red dashed lines with arrows show warm surface currents, black dashed lines with arrows show cold surface currents, dark blue arrow shows westerly wind and light blue arrow shows East Asian winter monsoon
表1 北太平洋中西部站位信息
Table 1 Information for the sites in central and western North Pacific
图2 北太平洋中部赫斯海隆SO202-37-2孔 G. bulloides18O、 G. inflata18O和H3571孔 G. inflata18O [ 5 ]与LR04-δ 18O [ 24 ] 对比建立的地层年代框架
Fig.2 Chronostratigraphic framework of Core SO202-37-2 from the Hess Rise, central North Pacific, assigned with marine isotope stages (MIS), stratigraphic correlations between LR04 stack [ 24 ] and Cores SO202-37-2 and H3571 [ 5 ] based on foraminiferal oxygen isotope
表2 北太平洋中部赫斯海隆SO202-37-2钻孔年龄控制点
Table 2 Age control points of Core SO202-37-2 from the Hess Rise, central North Pacific
图3 北太平洋中部赫斯海隆SO202-37-2孔年龄模式及沉积速率
黑色点为深度—年龄控制点,虚线为外推趋势线
Fig.3 Age model and sedimentation rate of Core SO202-37-2 from the Hess Rise, central North Pacific
Black dots are depth-age control points, and dashed lines are extrapolated trendlines
图4 北太平洋中部赫斯海隆SO202-37-2孔生源组分含量变化图
Fig.4 Variation in percentage of biogenic components of Core SO202-37-2 from the Hess Rise, central North Pacific
图5 北太平洋中部赫斯海隆SO202-37-2孔Ti/Ca, Al/Ca, Fe/Ca值及Ti, Al, Fe含量与Opal含量对比
Fig.5 Variations in Ti/Ca, Al/Ca, Fe/Ca ratios and Ti, Al, Fe content in comparison with percentage of Opal in Core SO202-37-2 from Hess Rise, central North Pacific
图6 北太平洋中部赫斯海隆SO202-37-2孔Ti/Ca, Al/Ca和Fe/Ca值与Opal含量相关性
Fig.6 Linear relationship of Ti/Ca, Al/Ca, Fe/Ca ratios with percentage of Opal in Core SO202-37-2 from Hess Rise, central North Pacific
图7 北太平洋中部赫斯海隆SO202-37-2孔Ti/Ca值、Opal、CaCO 3、TOC含量之间相关性
Fig.7 Linear relationship of Ti/Ca ratio, percentages of Opal, CaCO 3 and TOC in Core SO202-37-2 from Hess Rise, central North Pacific
图8 格陵兰冰芯粉尘通量 [ 45 ]与北太平洋中西部SO202-37-2、ODP882 [ 15 ]、H3571 [ 5 ]和V21-146孔 [ 11 ]粉尘输入对比
Fig.8 Comparison of dust input in Greenland ice core [ 45 ] and in Cores SO202-37-2, ODP882 [ 15 ], H3571 [ 5 ] and V21-146 [ 11 ]
图9 东亚及北太平洋冬夏两季西风急流示意图 [ 14 , 46 ]
遥感图像来源于http:∥search-image.tianditu.com
Fig.9 The location of Westerly Jet in East Asian and the North Pacific during winter and summer [ 14 , 46 ]
Remote sensing image comes from http:∥search-image.tianditu.com
[1] Windom H L.Eolian contributions to marine sediments[J]. Journal of Sedimentary Research, 1975, 45(2): 520-529.
[2] Nakai S, Halliday A N, Rea D K.Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 119(1/2): 143-157.
doi: 10.1016/0012-821X(93)90012-X     URL    
[3] Lu Jia, Wang Liqiang.Research progress of dust emission in Asia[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32): 19 813-19 817.
[卢佳, 王立强. 亚洲粉尘释放的研究进展[J]. 安徽农业科学, 2011, 39(32): 19 813-19 817.]
doi: 10.3969/j.issn.0517-6611.2011.32.065     URL    
[4] Wefer G, Fischer G.Seasonal patterns of vertical particle flux in equatorial and coastal upwelling areas of the eastern Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(8): 1 613-1 645.
doi: 10.1016/0967-0637(93)90019-Y     URL    
[5] Kawahata H, Okamoto T, Matsumoto E, et al. Fluctuations of eolian flux and ocean productivity in the mid-latitude north Pacific during the last 200 kyr[J]. Quaternary Science Reviews, 2000, 19(13): 1 279-1 291.
doi: 10.1016/S0277-3791(99)00096-7     URL    
[6] Rea D K, Leinen M, Janecek T R.Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4 688): 721.
doi: 10.1126/science.227.4688.721     URL     pmid: 17796713
[7] Nemoto K, Kroenke L W.Marine geology of the Hess Rise: 1. Bathymetry, surface sediment distribution, and environment of deposition[J]. Journal of Geophysical Research Solid Earth, 1981, 86(B11): 10 734-10 752.
doi: 10.1029/JB086iB11p10734     URL    
[8] Vallier T L, Dean W E, Rea D K, et al. Geologic evolution of Hess Rise, central North Pacific Ocean[J]. Geological Society of America Bulletin, 1983, 94(11): 1 289.
doi: 10.1130/0016-7606(1983)942.0.CO;2     URL    
[9] Gersonde R.The expedition of the research vessel "Sonne" to the subpolar North Pacific and the Bering Sea in 2009 (SO202-INOPEX)[J]. Reports on Polar and Marine Research, 2012, 643. DOI:10.2312/BzPM_0643_2012.
[10] Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in subarctic North Pacific stratification[J]. Science, 2005, 308(5 724): 1 003-1 006.
doi: 10.1126/science.1108696     URL     pmid: 15890879
[11] Hovan S A, Rea D K, Pisias N G.Late Pleistocene continental climate and oceanic variability recorded in Northwest Pacific sediments[J]. Paleoceanography, 1991, 6: 349-370.
doi: 10.1029/91PA00559     URL    
[12] Ujiié H.A 370-ka paleoceanographic record from the Hess Rise, central North Pacific Ocean, and an indistinct 'Kuroshio Extension'[J]. Marine Micropaleontology, 2003, 49(1/2): 21-47.
doi: 10.1016/S0377-8398(03)00026-4     URL    
[13] Sun Xiangping.A comparison of characteristics between the subtropical countercurrent, the north equatorial current and the north equatorial countercurrent in the Northwestern Pacific Ocean[J]. Journal of Oceanography of Huanghai and Bohai Seas, 2000, 18(1): 1-12.
[孙湘平. 西北太平洋副热带逆流、北赤道流、北赤道逆流几个特征的比较[J]. 黄渤海海洋学报, 2000, 18(1): 1-12.]
doi: 10.3969/j.issn.1671-6647.2000.01.001     URL    
[14] Nagashima K, Tada R, Matsui H, et al. Orbital- and millenial-scale variations in Asian dust transport path to the Japan Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 247(1): 144-161.
doi: 10.1016/j.palaeo.2006.11.027     URL    
[15] Serno S, Winckler G, Anderson R F, et al. Change in dust seasonality as the primary driver for orbital-scale dust storm variability in East Asia[J]. Geophysical Research Letter, 2017, 44: 3 796-3 805.
doi: 10.1002/2016GL072345     URL    
[16] Ma Jing, Xu Haiming.The relationship between meridional displacement of the oceanic front in Kuroshio extension during spring and atmospheric circulation in East Asia[J]. Journal of the Meteorological Sciences, 2012, 32(4): 375-384.
[马静, 徐海明. 春季黑潮延伸体海洋锋区经向位移与东亚大气环流的关系[J]. 气象科学, 2012, 32(4): 375-384.]
doi: 10.3969/2012jms.0092     URL    
[17] Wu Boyu.Kuroshio current-Ⅲ kuroshio current plankton and others[J]. Marine Bulletin, 1986, (3): 78-82.
[伍伯瑜. 黑潮流系-Ⅲ黑潮流系的浮游生物及其他[J]. 海洋通报, 1986, (3): 78-82.]
URL    
[18] Kuehn H, Lembkejene L, Gersonde R, et al. Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation[J]. Climate of the Past Discussions, 2014, 10(3):2 215-2 236.
doi: 10.5194/cp-10-2215-2014     URL    
[19] Tian Jun, Wang Pinxian, Cheng Xinrong.Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerina at ODP Site 1143, Southern South China Sea[J]. Earth ScienceJournal of China University of Geoscience, 2004, 29(1):1-6.
[田军, 汪品先, 成鑫荣. 南海ODP1143站底栖有孔虫CibicidoidesUvigerina稳定氧碳同位素值的均衡实验[J]. 地球科学——中国地质大学学报, 2004, 29(1):1-6.]
[20] Mortlock R A, Froelich P N.A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1989, 36(9): 1 415-1 426.
doi: 10.1016/0198-0149(89)90092-7     URL    
[21] Sun Yechen, Wang Rujian, Xiao Wenshen, et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments[J]. Acta Oceanologica Sinica, 2011, 33(2): 103-114.
[孙烨忱, 王汝建, 肖文申, 等. 西北冰洋表层沉积物中生源和陆源粗组分及其沉积环境[J]. 海洋学报, 2011, 33(2): 103-114.]
URL    
[22] Zhang Haifeng, Wang Rujian, Sun Yechen, et al. Distribution pattern of biogenic components in surface sediments of the northern Bering Sea and their paleoceanographic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 79-87.
[张海峰, 王汝建, 孙烨忱, 等. 白令海北部表层沉积物中的生源组分分布特征及其古海洋学意义[J]. 海洋地质与第四纪地质, 2011, 31(5): 79-87.]
URL    
[23] Yang Shouye, Li Congxian.Compositions of organic elements and carbonate in the late Cenozoic sediments of the Changjiang Delta: Implication for paleoenvironmental changes[J]. Geochimica, 2006, 35(3):249-256.
[杨守业, 李从先. 长江三角洲晚新生代沉积物有机碳、总氮和碳酸盐组成及古环境意义[J]. 地球化学, 2006, 35(3):249-256.]
[24] Lisiecki L E, Raymo M E.A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1). DOI: 10.1029/2004PA001071
[25] Woodard S C, Thomas D J, Hovan S, et al. Evidence for orbital forcing of dust accumulation during the early Paleogene greenhouse[J]. Geochemistry Geophysics Geosystems, 2013, 12(2): 364-371.
doi: 10.1029/2010GC003394     URL    
[26] Rea D K, Hovan S A.Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific[J]. Paleoceanography, 1995, 10(2): 251-258.
doi: 10.1029/94PA03355     URL    
[27] Raiswell R.Towards a global highly reactive iron cycle[J]. Journal of Geochemical Exploration, 2006, 88: 436-439.
doi: 10.1016/j.gexplo.2005.08.098     URL    
[28] Deng Weibin, Hu Daquan, Tang Xingyan, et al.SPSS 19 (Chinese Edition) Statistical Analysis Practical Guide[M]. Beijing: Publishing House of Electronics Industry, 2012: 494-502.
[邓维斌, 胡大权, 唐兴艳, 等. SPSS 19 (中文版) 统计分析实用教程[M]. 北京: 电子工业出版社, 2012: 494-502.]
[29] Bonn W J, Gingele F X, Grobe H, et al. Paleoproductivity at the Antarctic continental margin: Opal and barium records of the last 400 kyr[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 139(3/4): 195-211.
doi: 10.1016/S0031-0182(97)00144-2     URL    
[30] Murray R W, Leinen M, Isern A R.Biogenic flux of Al to sediment in the central eqatorial Pacific Ocean: Evidence for increased productivity during glacial periods[J]. Paleoceanography, 1993, 8(5): 651-670.
doi: 10.1029/93PA02195     URL    
[31] Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr[J]. Paleoceanography, 2000, 15(6): 570-592.
doi: 10.1029/1999PA000457     URL    
[32] Winckler G, Anderson R F, Schlosser P.Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition[J]. Paleoceanography, 2005, 20(4): 347-356.
doi: 10.1029/2005PA001177     URL    
[33] Waelbroeck C, Pichat S, Evelyn Böhm, et al. Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 ky[J]. Climate of the Past Discussions, 2018,14:1 315-1 330.
doi: 10.5194/cp-14-1315-2018     URL    
[34] Francesca Vallé, Westerhold T, Dupont L M.Orbital-driven environmental changes recorded at ODP Site 959 (eastern equatorial Atlantic) from the Late Miocene to the Early Pleistocene[J]. International Journal of Earth Sciences, 2017, 106(3):1 161-1 174.
doi: 10.1007/s00531-016-1350-z     URL    
[35] Wang Rujian, Jian Zhimin, Xiao Wenshen, et al. The correlations between the east Asian monsoon, the world Ice volume, orbital drive and Opal record in the South China Sea during Quaternary[J]. Science in China (Series D), 2007, 37(4): 521-533.
[王汝建, 翦知湣, 肖文申, 等. 南海第四纪的生源蛋白石记录: 与东亚季风、全球冰量和轨道驱动的联系[J]. 中国科学:D辑, 2007, 37(4): 521-533.]
doi: 10.3321/j.issn:1006-9267.2007.04.011     URL    
[36] Wang Rujian, Xiao Wenshen, Xiang Fei, et al. Distribution pattern of biogenic components in surface sediments of the weatern Arctic Ocean and their palaeoceanographic implications[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 61-69.
[王汝建, 肖文申, 向霏, 等. 北冰洋西部表层沉积物中生源组分及其古海洋学意义[J]. 海洋地质与第四纪地质, 2007, 27(6): 61-69.]
URL    
[37] Lam P J, Bishop J K B. The continental margin is a key source of iron to the HNLC North Pacific Ocean[J]. Geophysical Research Letters, 2008, 35(7): 521-539.
doi: 10.1029/2008GL033294     URL    
[38] Bordiga M, Cobianchi M, Lupi C, et al. Coccolithophore carbonate during the last 450 ka in the NW Pacific Ocean (ODP site 1209B, Shatsky Rise)[J]. Journal of Quaternary Science, 2014, 29(1): 57-69.
doi: 10.1002/jqs.2677     URL    
[39] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6 493): 123-129.
doi: 10.1038/371123a0     URL    
[40] Zhang Jiangyong, Wang Pinxian, Li Qianyu, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 2007, 64(3/4): 121-140.
doi: 10.1016/j.marmicro.2007.03.003     URL    
[41] Kennedy P, Kennedy H, Papadimitriou S.The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment[J]. Rapid Communications in Mass Spectrometry, 2005, 19(8): 1 063-1 068.
doi: 10.1002/rcm.1889     URL     pmid: 15776498
[42] Zhang Haifeng, Wang Rujian, Sun Yechen, et al. Distribution pattern of biogenic components in surface sediments of northern Bering Sea and their palaeoceanographic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 79-87.
[张海峰, 王汝建, 孙烨忱, 等. 白令海北部表层沉积物中的生源组分分布特征及其古海洋学意义[J]. 海洋地质与第四纪地质, 2011, 31(5): 79-87.]
URL    
[43] Thunell R C, Miao Q, Calvert S E, et al. Glacial-holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7(2): 143-162.
doi: 10.1029/92PA00278     URL    
[44] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River[J]. Limnology & Oceanography, 1986, 31(4): 717-738.
doi: 10.4319/lo.1986.31.4.0717     URL    
[45] Ruth U, Bigler M, Röthlisberger R, et al. Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate[J]. Geophysical Research Letters, 2007, 34(3): 116-142.
doi: 10.1029/2006GL027876     URL    
[46] Xiao Jule, Porter S C, An Zhisheng, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 130,000 yr[J]. Quaternary Research, 1995, 43(1): 22-29.
doi: 10.1006/qres.1995.1003     URL    
[47] Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific[J]. Earth & Planetary Science Letters, 2014, 387(1): 252-263.
doi: 10.1016/j.epsl.2013.11.008     URL    
[48] Sun Donghuai, Su Ruixia, Bloemendal J, et al. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 264(1/2): 39-53.
doi: 10.1016/j.palaeo.2008.03.011     URL    
[49] Sun Donghuai, An Zhisheng, Su Ruixia, et al. Dust deposition records of the recent 2.6 Ma monsoon circulation and westerly circulation in northern China[J]. Science in China (Series D), 2003, 33(6): 497-504.
[孙东怀, 安芷生, 苏瑞侠, 等. 最近2.6 Ma中国北方季风环流与西风环流演变的风尘沉积记录[J]. 中国科学: D辑, 2003, 33(6): 497-504.]
[50] Zhang Yaocun, Kuang Xueyuan, Guo Weidong, et al. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia[J]. Geophysical Research Letters, 2006, 33(11): 317-324.
doi: 10.1029/2006GL026377     URL    
[51] Sun Jimin.Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth & Planetary Science Letters, 2002, 203(3/4): 845-859.
doi: 10.1016/S0012-821X(02)00921-4     URL    
[52] Mingram J, Schettler G, Nowaczyk N, et al. The Huguang Maar Lake—A high-resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78,000 years from South China[J]. Quaternary International, 2004, 122(1):85-107.
doi: 10.1016/j.quaint.2004.02.001     URL    
[53] Qu Wenjun, Zhang Xiaoye, Wang Dan, et al. The important significance of westerly wind study[J]. Marine Geology & Quaternary Geology, 2004, 24(1):125-132.
[屈文军, 张小曳, 王丹, 等. 西风带研究的重要意义[J]. 海洋地质与第四纪地质, 2004, 24(1):125-132.]
URL    
[1] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.
[2] 苏纪兰,李炎,王启. 我国21世纪初海洋科学研究中的若干重要问题[J]. 地球科学进展, 2001, 16(5): 658-663.
阅读次数
全文


摘要