地球科学进展 ›› 2012, Vol. 27 ›› Issue (6): 613 -623. doi: 10.11867/j.issn.1001-8166.2012.06.0613

综述与评述 上一篇    下一篇

二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述
沈文杰 1,2,张华 3,孙永革 4,林杨挺 5,梁婷 1,2,杨志军 1,2,周永章 1,2   
  1. 1.中山大学地球科学系,广东广州510275; 
    2.广东省地质过程与矿产资源探查重点实验室,广东广州510275;
    3.现代古生物学和地层学国家重点实验室,中国科学院南京地质古生物研究所,江苏南京210008;
    4.浙江大学地球科学系,浙江杭州310027; 5.地球深部研究重点实验室,中国科学院地质与地球物理研究所,北京100029
  • 收稿日期:2011-11-11 修回日期:2012-03-31 出版日期:2012-06-10
  • 通讯作者: 沈文杰(1978-),男,河南叶县人,副教授,主要从事地质历史上重大地质事件的地质过程与恢复研究. E-mail:shenwjie@mail.sysu.edu.cn
  • 基金资助:

    国家自然科学基金项目“华南二叠纪—三叠纪界线高分辨率野火事件研究”(编号:40803014)和“二叠纪—三叠纪过渡期陆相环境异常的分子化石记录”(编号:40973050);中山大学青年教师起步资助计划(编号:32110-3281401)资助.

Evidences for the Permian-Triassic Wildfire Event: Review and Appraisal

Shen Wenjie 1,2, Zhang Hua 3, Sun Yongge 4, Lin Yangting 5, Liang Ting 1,2, Yang Zhijun 1,2, Zhou Yongzhang 1,2   

  1. 1.Department of Earth Sciences, Sun Yatsen University, Guangzhou510275, China;
    2.Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration, Guangzhou510275, China;
    3.State Key Laboratory of Palaeoliology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing210008, China;
    4.Department of Earth Sciences, Zhejiang University, Hangzhou310027, China;
    5.Key Laboratory of the Earth′s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
  • Received:2011-11-11 Revised:2012-03-31 Online:2012-06-10 Published:2012-06-10

黑碳和燃烧源多环芳烃作为大火燃烧的产物有很强的化学惰性及生物惰性,能够在地层中长期稳定地保存,所以成为恢复古代大火历史的最常用指标。近年来世界各地二叠系—三叠系(P-Tr)界线地层中相继发现了黑碳(木炭等)和燃烧源多环芳烃等记录,特别是在煤山P-Tr界线地层,黑碳和燃烧源多环芳烃含量在生物灭绝线附近(25~26层)出现极高的峰值,据此首次明确地提出了P-Tr界线大火事件。P-Tr界线大火的规模、性质如何,与P-Tr界线生物灭绝有什么关系等,值得深入讨论和研究。大火事件发生在陆地上,通过其燃烧及排放的烟尘等,把陆地、大气和海洋密切联系起来,有利于通过系统的整体观来研究当时的气候环境变迁。因此,在回顾和总结PTr界线地层中的大火燃烧记录基础上,评述了大火事件与生物灭绝及相关地质事件和环境变化之间的联系,以期引起国内外专家学者的关注,为P-Tr界线生物灭绝及相关研究提供新的思路。

Black Carbon (BC) and combustion-derived Polycyclic Aromatic Hydrocarbons (PAHs), as inert products of combustion, serve as indicators of palaeo-wildfire for their long-lasting preservation in the sediments. Recently, wildfire records including BC particles and combustion-derived PAHs were discovered in the PermianTriassic (P-Tr) sediments worldwide. It is especially exciting that the content of BC and combustion-derived PAHs in the Meishan P-Tr boundary shows steep peak coinciding with the mass extinction horizon (bed 25 and bed 26). Thus, the P-Tr wildfire event was definitely proposed for the first time. It is deserved to probe the scale and characteristics of the P-Tr wildfire, and the relationship between wildfire and mass extinction. Wildfire, which  occurs on land, could tie land, atmosphere and ocean together through combustion products. Climatic and environmental changes, as a result, can be studied by wildfire which gives a holistic approach to understanding the catastrophic history. Therefore, wildfire records in the P-Tr sediment were reviewed, and the relationships between wildfire and mass extinction were appraised in order to draw experts′ attentions.

中图分类号: 

[1]Erwin D H. The Great Paleozoic Crisis[M]. New York: Columbia University Press, 1993: 327.
[2]Erwin D H, Bowring S A, Jin Y G. End-Permian Mass Extinctions: A review[M]Koebel C, MacLeod K G,eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder, Colorado: Geoloical Society of America Special Paper 356,2002: 363-383.
[3]Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction[J].Science, 1998, 280(5 366): 1 039-1 045.
[4]Kamo S L, Czamanske G K, Amelin Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 2003, 214(1/2): 75-91.
[5]Wignall P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33.
[6]Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences,2010, 107(19): 8 543-8 548.
[7]Sobolev S V, Sobolev A V, Kuzmin D V, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes[J].Nature, 2011, 477(7 364): 312-316.
[8]Becker L, Poreda R J, Hunt A G, et al. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes[J].Science, 2001, 291(5 508): 1 530-1 533.
[9]Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle[J].Geology, 2001, 29(9): 815-818.
[10]Basu A R, Petaev M I, Poreda R J, et al. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica[J].Science, 2003, 302(5 649): 1 388-1 392.
[11]Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5 265): 1 155-1 158.
[12]Grice K, Cao C, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307(5 710): 706-709.
[13]Cao C, Love G D, Hays L E, et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event[J]. Earth and Planetary Science Letters, 2009, 281(3/4): 188-201.
[14]Shen W, Lin Y, Xu L, et al. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 253(3/4): 323-331.
[15]Liang H. End-Permian catastrophic event of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan section of South China[J].Chinese Science Bulletin,2002, 47(16): 1 393-1 397.
[16]Maruoka T, Koeberl C, Hancox P J, et al. Sulfur geochemistry across a terrestrial Permian-Triassic boundary section in the Karoo Basin, South Africa[J]. Earth and Planetary Science Letters,2003, 206(1/2): 101-117.
[17]Ward P D, Botha J, Buick R, et al. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa[J]. Science, 2005, 307(5 710): 709-714.
[18]Krull E S, Retallack G J, Campbell H J, et al. Delta C-13(org) chemostratigraphy of the Permian-Triassic boundary in the Maitai Group, New Zealand: Evidence for high-latitudinal methane release[J]. New Zealand Journal of Geology and Geophysics,2000, 43(1): 21-32.
[19]Ryskin G. Methane-driven oceanic eruptions and mass extinctions[J].Geology, 2003, 31(9): 741-744.
[20]Wu Y, Fan J. Quantitative evaluation of the sea-level drop at the end-Permian: Based on reefs[J]. Acta Geologica Sinica, 2003, 77(1): 95-102.
[21]Yin H, Feng Q, Lai X, et al. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary[J]. Global and Planetary Change, 2007, 55(1/3): 1-20.
[22]Yin H, Huang S, Zhang K, et al. The effects of volcanism on the Permo-Triassic mass extinction in South China[M]Sweet W C, Yang Zunyi, Dickins J M, et al, eds. Permo-Triassic Events in the Eastern Tethys, Stratigraphy, Classifiction, and Relations with the Western Tethys. London: Cambridge University Press,1992: 146-157.
[23]Yin H, Huang S, Zhang K, et al. Volcanism at the Permian-Triassic boundary in South China and its effects on mass extinction[J]. Acta Geologica Sinica,1989, 63(2): 169-180.
[24]Koeberl C, Farley K A, Peucker-Ehrenbrink B, et al. Geochemistry of the end-Permian extinction event in Austria and Italy: No evidence for an extraterrestrial component[J]. Geology, 2004, 32(12): 1 053-1 056.
[25]Farley K A, Ward P, Garrison G, et al. Absence of extraterrestrial 3He in Permian-Triassic age sedimentary rocks[J]. Earth and Planetary Science Letters,2005, 240(2): 265.
[26]Xu L, Lin Y, Shen W, et al. Platinum-group elements of the Meishan Permian-Triassic boundary section: Evidence for flood basaltic volcanism[J].Chemical Geology, 2007, 246(1/2): 55-64.
[27]Page S E, Siegert F, Rieley J O, et al. The amount of carbon released from peat and forest fires in Indonesia during 1997[J]. Nature, 2002, 420(6 911): 61-65.
[28]Abram N J, Gagan M K, McCulloch M T, et al. Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires[J]. Science, 2003, 301(5 635): 952-955.
[29]Wolbach W S, Gilmour I, Anders E, et al. Global fire at the Cretaceous-Tertiary boundary[J]. Nature, 1988, 334(25): 665-669.
[30]Wolbach W S, Widicus S, Kyte F T. A search for soot from global wildfires in Central Pacific Cretaceous-Tertiary boundary and other extinction and impact horizon sediments[J]. Astrobiology, 2003, 3(1): 91-97.[31]Venkatesan M I, Dahl J. Organic geochemical evidence for global fires at the Cretaceous/Tertiary boundary[J]. Nature, 1989, 338(6 210): 57-60.
[32]Harvey M C, Brassell S C, Belcher C M, et al. Combustion of fossil organic matter at the Cretaceous-Paleogene (K-P) boundary[J].Geology, 2008, 36(5): 355-358.
[33]Belcher C M, Finch P, Collinson M E, et al. Geochemical evidence for combustion of hydrocarbons during the K-T impact event[J]. Proceedings of the National Academy of Sciences, 2009, 106(11): 4 112-4 117.[34]Chijiwa T, Arai T, Sugai T, et al. Fullerenes found in the Permian-Triassic mass extinction period[J]. Geophysical Research Letters, 1999, 26(6): 767-770.
[35]Wang Shangyan, Yin Hongfu. Study on Terrestrial Permian-Triassic Boundary Strata in East Yunnan and West Guizhou[M].Wuhan: Press of China University of Geosciences, 2001.[王尚彦, 殷鸿福, 滇东黔西陆相二叠纪—三叠纪界线地层研究[M]. 武汉: 中国地质大学出版社, 2001.]
[36]Shen Wenjie, Lin Yangting, Sun Yongge, et al. Black carbon record across the Permian-Triassic boundary section at Meishan, Changhsing county, Zhejiang province and its significance[J]. Acta Petrologica Sinica,2008, 24(10): 2 407-2 414.[沈文杰, 林杨挺, 孙永革, 等, 浙江省长兴县煤山剖面二叠—三叠系过渡地层中的黑碳记录及其地质意义[J]. 岩石学报, 2008, 24(10): 2 407-2 414.]
[37]Wang Z Q, Chen A S. Traces of arborescent lycopsids and dieback of the forest vegetation in relation to the terminal Permian mass extinction in North China[J]. Review of Palaeobotany and Palynology, 2001, 117(4): 217-243.
[38]Grice K, Nabbefeld B, Maslen E. Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian-Triassic boundary[J]. Organic Geochemistry, 2007, 38(11): 1 795-1 803.
[39]Xie S, Pancost R D, Huang J, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J]. Geology, 2007, 35(12): 1 083-1 086.
[40]Cao C, Wang W, Liu L, et al. Two episodes of 13C-depletion in organic carbon in the Latest Permian: Evidence from the terrestrial sequences in northern Xinjiang, China[J]. Earth and Planetary Science Letters, 2008, 270(3/4): 251-257.
[41]Nabbefeld B, Grice K, Summons R E, et al. Significance of Polycyclic Aromatic Hydrocarbons (PAHs) in Permian/Triassic boundary sections[J]. Applied Geochemistry, 2010, 25(9): 1 374-1 382.
[42]Shen W, Sun Y, Lin Y, et al. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events[J]. Geochimica et Cosmochimica Acta,2011, 75(7): 1 992-2 006.
[43]Yin H, Yang F, Yu J, et al. An accurately delineated Permian-Triassic boundary in continental successions[J]. Science in China (Series D), 2007, 50(9): 1 281-1 292.
[44]Yu J, Li H, Zhang S, et al. Timing of the terrestrial Permian-Triassic boundary biotic crisis: Implications from U-Pb dating of authigenic zircons[J]. Science in China (Series D), 2008, 51(11): 1 633-1 645.
[45]Yin H, Zhang K, Tong J, et al. The Global Stratotype Section and Point of the Permian-Triassic boundary (GSSP) [J]. Episodes, 2001, 24(2): 102-114.
[46]Mundil R, Ludwig K R, Metcalfe I, et al. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons[J]. Science, 2004, 305(5 691): 1 760-1 763.
[47]Mundil R, Metcalfe I, Ludwig K R, et al. Timing of the Permian-Triassic biotic crisis: Implications from new zircon U/Pb age data (and their limitations) [J]. Earth and Planetary Science Letters, 2001, 187(1/2): 131-145.
[48]Fang Zongjie. The Permain-Triassic boundary crisis: Patterns of extinction, collapse of various ecosystem, and their causes[M]Rong Jiayu, Fang Zongjie, eds. Mass Extinction and Recovery-Evidences from the Palaeozoic and Triassic of South China. Hefei: University of Science and Technology of China Press,2004: 785-928, 1 075-1 076.[方宗杰. 二叠纪—三叠纪之交生物大灭绝的型式、全球生态系统的巨变及其起因
[M]戎嘉余, 方宗杰编. 生物大灭绝与复苏——来自华南古生代和三叠纪的证据. 合肥: 中国科技大学出版社,2004: 785-928, 1 075-1 076.]
[49]Shen W J, Lin Y T. Environmental conditions and events prior to the Permian-Triassic boundary at Meishan section, China[J]. Journal of Earth Science, 2010, 21: 151-153.
[50]Zhang F, Feng Q, He W, et al. Multidisciplinary stratigraphy across the Permian-Triassic boundary in deep-water environment of the Dongpan section, South China[J]. Norwegian Journal of Geology, 2006, 86: 125-131.
[51]He W, Shi G R, Feng Q, et al. Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 145-163.
[52]Zhang Fan, Feng Qinglai, He Weihong, et al. Multidisciplinary stratigraphy correlation of the Permian-Triassic boundary between Dongpan deep-water environment section,Guangxi and Meishan section[J]. Geological Science and Technology Information,2007, 26(1): 41-45.[张凡, 冯庆来, 何卫红, 等, 广西东攀P-T界线深水相剖面与煤山剖面地层学对比[J]. 地质科技情报, 2007, 26(1): 41-45.]
[53]Peng Y, Shi G R. Life crises on land across the Permian-Triassic boundary in South China[J]. Global and Planetary Change, 2009, 65(3/4): 155-165.
[54]Scott A C. The Pre-Quaternary history of fire[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 281-329.
[55]Hedges J I, Eglinton G, Hatcher P G, et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry, 2000, 31(10): 945-958.
[56]Masiello C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1/4): 201-213.
[57]Killops S D, Massoud M S. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: Evidence for Jurassic vegetation fires[J]. Organic Geochemistry, 1992, 18(1): 1-7.
[58]Kennedy I M. Models of soot formation and oxidation[J]. Progress in Energy and Combustion Science, 1997, 23(2): 95-132.
[59]Jiang C, Alexander R, Kagi R I, et al. Polycyclic aromatic hydrocarbons in ancient sediments and their relationships to palaeoclimate[J]. Organic Geochemistry, 1998, 29(5/7): 1 721-1 735.
[60]Chylek P, Johnson B, Damiano P A, et al. Biomass burning record and black carbon in the GISP2 ice core[J]. Geophysical Research Letters, 1995, 22: 89-92.
[61]Yalcin K, Wake C P, Kreutz K J, et al. A 1000-yr record of forest fire activity from Eclipse Icefield, Yukon, Canada[J]. The Holocene, 2006, 16(2): 200-209.
[62]Huang C, Pang J, Chen S E, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1/2): 28-44.
[63]Miao X, Mason J A, Johnson W C, et al. High-resolution proxy record of Holocene climate from a loess section in southwestern Nebraska, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3/4): 368-381.
[64]Zhou B, Shen C, Sun W, et al. Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(3/4): 617-625.
[65]Arinobu T, Ishiwatari R, Kaiho K, et al. Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in delta 13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain[J]. Geology, 1999, 27(8): 723-726.
[66]Marynowski L, Scott A C, Zaton M, et al. First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the Middle Jurassic of the Neuquén Basin, Argentina[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1/2): 129-136.
[67]Marynowski L, Filipiak P. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland)[J]. Geological Magazine, 2007, 144(3): 569-595.
[68]Marynowski L, Filipiak P, Pisarzowska A. Organic geochemistry and palynofacies of the Early-Middle Frasnian transition (Late Devonian) of the Holy Cross Mountains, southern Poland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 269(3/4): 152-165.
[69]Poort R J, Clement-Westerhof J A, Looy C V, et al. Aspects of Permian palaeobotany and palynology. XVII. Conifer extinction in Europe at the Permian-Triassic junction: Morphology, ultrastructure and geographic/stratigraphic distribution of Nuskoisporites dulhuntyi (prepollen of Ortiseia, Walchiaceae)[J]. Review of Palaeobotany and Palynology, 1997, 97(1/2): 9.
[70]Looy C V, Brugman W A, Dilcher D L, et al. The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis[J]. Proceedings of the National Academy of Sciences, 1999, 96(24): 13 857-13 862.
[71]Uhl D, Kerp H. Wildfires in the Late Palaeozoic of central Europe—The Zechstein (Upper Permian) of NW-Hesse (Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 199(1/2): 1-15.
[72]Uhl D, Lausberg S, Noll R, et al. Wildfires in the Late Palaeozoic of central Europe—An overview of the Rotliegend (Upper Carboniferous-Lower Permian) of the Saar-Nahe Basin (SW-Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207(1/2): 23-35.
[73]Glasspool I. A major fire event recorded in the mesofossils and petrology of the Late Permian, Lower Whybrow coal seam, Sydney Basin, Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 357-380.
[74]Uhl D, Abu Hamad A, Kerp H, et al. Evidence for palaeo-wildfire in the Late Permian palaeotropics-charcoalified wood from the Um Irna Formation of Jordan[J]. Review of Palaeobotany and Palynology, 2007, 144(3/4): 221-230.
[75]Thomas B M, Willink R J, Grice K, et al. Unique marine Permian-Triassic boundary section from Western Australia[J]. Australian Journal of Earth Sciences, 2004, 51(3): 423-430.
[76]Shen Wenjie. Mineral and Geochemical Explanation of Boundary Events: Evidence from Meishan Permian-Triassic Section[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,2007.[沈文杰.二叠纪—三叠纪界线事件的矿物学、地球化学解译:以煤山剖面为例[D]. 广州: 中国科学院广州地球化学研究所, 2007.]
[77]Grasby S E, Sanei H, Beauchamp B. Catastrophic dispersion of coal fly ash into oceans during the Latest Permian extinction[J]. Nature Geoscience, 2011,4(2):104-107.
[78]Berner R A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model[J]. American Journal of Science, 2009, 309(7): 603-606.
[79]Faure K, de Wit M J,  Willis J P. Late Permian global coal hiatus linked to 13C-depleted CO2 flux into the atmosphere during the final consolidation of Pangea[J]. Geology, 1995, 23(6): 507-510.
[80]Retallack G J, Jahren A H. Methane release from igneous intrusion of coal during Late Permian extinction events[J]. Journal of Geology, 2008, 116(1): 1-20.
[81]Berner R A. Carbon, sulfur and O2 across the Permian-Triassic boundary[J]. Journal of Geochemical Exploration, 2006, 88(1/3): 416-418.
[82]Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188.
[83]Wignall P B, Twitchett R J. Extent, duration, and nature of the Permian-Triassic superanoxic event[M]Koebel C, MacLeod K G,eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder, Colorado: Geoloical Society of America Special Paper 356, 2002: 395-413.
[84]Wignall P B, Newton R. Pyrite framboid dimeter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298: 537-552.
[85]Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3 897-3 912.
[86]Scott A C, Glasspool I J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration[J]. Proceedings of the National Academy of Sciences, 2006, 103(29): 10 861-10 865.[87]Belcher C M, McElwain J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic[J]. Science, 2008, 321(5 893): 1 197-1 200.
[88]Finkelstein D B, Pratt L M, Curtin T M, et al. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south-eastern Arizona, USA[J]. Sedimentology, 2005, 52(3): 587-599.
[89]Pyne S J, Andrews P L, Laven R D. Introduction to Wildland Fire[M].New York: John Wiley & Sons, Inc.  1996.
[90]Vega J A, Fernández C, Fonturbel T. Throughfall, runoff and soil erosion after prescribed burning in gorse shrubland in Galicia (NW Spain)[J]. Land Degradation & Development, 2005, 16(1): 37-51.
[91]Kunimaru T, Shimizu H, Takahashi K, et al. Differences in geochemical features between Permian and Triassic cherts from the Southern Chichibu terrane, southwest Japan: REE abundances, major element compositions and Sr isotopic ratios[J]. Sedimentary Geology, 1998, 119(3/4): 195-217.
[92]Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change[J]. Chemical Geology, 2002, 182(1): 15-34.
[93]Zhou Yaoqi, Chai Zhifang, Mao Xueying, et al. Abnormal Sr isotope event in the Permian-Triassic boundary in Meishan section, Zhejiang[J]. Journal of the Graduate School of the Chinese Academy of Sciences,1990, 7(1): 83-88.[周瑶琪, 柴之芳, 毛雪瑛, 等.浙江长兴煤山二叠、三叠系界线Sr同位素异常事件[J]. 中国科技大学研究生院学报, 1990, 7(1): 83-88.]
[94]Korte C, Kozur H W, Bruckschen P, et al. Strontium isotope evolution of Late Permian and Triassic seawater[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 47-62.
[95]Sephton M A, Looy C V, Brinkhuis H, et al. Catastrophic soil erosion during the end-Permian biotic crisis[J]. Geology, 2005, 33(12): 941-944.
[96]Wang C, Visscher H. Abundance anomalies of aromatic biomarkers in the Permian-Triassic boundary section at Meishan, China—Evidence of end-Permian terrestrial ecosystem collapse[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 252(1/2): 291-303.
[97]Xiong C, Wang Q. Permian-Triassic land-plant diversity in South China: Was there a mass extinction at the Permian/Triassic boundary?[J]. Paleobiology, 2011, 37(1): 157-167.
[98]Shen S Z, Crowley J L, Wang Y,  et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334(6 061): 1 367-1 372.

[1] 何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42.
[2] 黄云飞, 童金南. 古-中生代之交双壳类演变研究进展[J]. 地球科学进展, 2014, 29(8): 922-933.
[3] 张世春,王毅勇,童全松. 碳同位素技术在碳质气溶胶源解析中应用的研究进展[J]. 地球科学进展, 2013, 28(1): 62-70.
[4] 黄国培,陈颖军,田崇国,唐建辉,潘晓辉,王艳,李军. 海洋溶解态黑碳的研究进展[J]. 地球科学进展, 2012, 27(12): 1326-1336.
[5] 占长林,曹军骥,韩永明,安芷生. 古火灾历史重建的研究进展[J]. 地球科学进展, 2011, 26(12): 1248-1259.
[6] 沈文杰,林杨挺,王道德,周永章,缪秉魁. 天然富勒烯及其在P-T界线地层的研究进展[J]. 地球科学进展, 2006, 21(9): 903-910.
[7] 许黎,王亚强,陈振林,罗勇,任万辉. 黑碳气溶胶研究进展Ⅰ:排放、清除和浓度[J]. 地球科学进展, 2006, 21(4): 352-360.
[8] 张华. 撞击地层学及其研究进展[J]. 地球科学进展, 2005, 20(9): 961-969.
[9] 童金南;王德珲. 三叠纪年代地层与生物复苏[J]. 地球科学进展, 2005, 20(12): 1321-1326.
[10] 史斗,刘文汇,郑军卫. 深层气理论分析和深层气潜势研究[J]. 地球科学进展, 2003, 18(2): 236-244.
[11] 郭正府,刘嘉麒. 火山活动与气候变化研究进展[J]. 地球科学进展, 2002, 17(4): 595-604.
[12] 欧阳自远,管云彬. 巨大撞击对地球演化的系统灾变效应[J]. 地球科学进展, 1992, 7(1): 22-.
阅读次数
全文


摘要