地球科学进展 ›› 2011, Vol. 26 ›› Issue (5): 507 -515. doi: 10.11867/j.issn.1001-8166.2011.05.0507

综述与评述 上一篇    下一篇

月壤中纳米金属铁的太空风化成因及模拟方法分析
唐红 1, 2,李雄耀 1*,王世杰 1,李阳 1, 2   
  1. 1.中国科学院地球化学研究所月球与行星科学研究中心,贵州贵阳550002;2.中国科学院研究生院,北京100039
  • 收稿日期:2010-09-02 修回日期:2010-12-08 出版日期:2011-05-10
  • 通讯作者: 李雄耀(1978-),男,广西南宁人,副研究员,主要从事月球与行星科学研究. E-mail:lixiongyao@vip.skleg.cn
  • 基金资助:

    国家高技术研究发展计划项目“月表物质微波传输特性及月壤厚度反演技术与模型研究”(编号:2009AA122204);国家自然科学基金项目“太空风化作用形成的单质铁对UV-VIS-NIR光谱特征的影响”(编号:40803019)和“利用绕月探测工程的亮度温度数据反演月壤厚度的模式研究”(编号:40873055);中国科学院地球化学研究所前沿领域项目“月壤矿物显微结构与空间风化过程研究”资助.

The Origin and Simulation of Nanophase Iron in Lunar Soil

Tang Hong 1, 2, Li Xiongyao 1, Wang Shijie 1, Li Yang 1, 2   

  1. 1.Lunar and Planetary Science Research Center,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang550002, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing100039, China
  • Received:2010-09-02 Revised:2010-12-08 Online:2011-05-10 Published:2011-05-10

月壤中普遍存在着大量由太空风化作用产生的纳米金属铁,这些纳米金属铁在一定程度上改变了月球表面的物理、化学和光学特征。纳米金属铁在月壤中主要赋存于胶结质玻璃相中和月壤颗粒的表面,胶结质玻璃相的纳米金属铁起源于微陨石轰击富含太阳风氢粒子的月壤产生的高温熔融还原作用,颗粒表面的纳米金属铁来自微陨石轰击引起的蒸发沉积作用和太阳风、宇宙射线粒子的溅射沉积作用的共同作用。根据月壤中纳米金属铁的成因和特征,分析了采用微波加热技术和磁控溅射技术分别模拟胶结质玻璃相中和颗粒表面纳米金属铁的可行性研究,初步的模拟实验表明这两种方法模拟生产的样品中纳米金属铁的特征和真实月壤的相近,模拟样品对于月球遥感光谱解译、月球科学研究和月球探测工程都具有重要的意义。

Unprotected by atmosphere and magnetosphere, exposed lunar surface has been subjected to several harsh space processes. Among them, meteoroids and energetic charged particles are the dominant forces that shape the lunar surface. Collectively, these processes are known as “space weathering”. Nanophase iron (np-Fe0) particles produced by space weathering have been widely observed in the lunar soil, which could have important effects on the physical, chemical and optical properties of lunar soil. In studies of lunar samples, it is found that np-Fe0 occurs in two main petrographic settings in lunar soil: as inclusions within agglutinitic glass and as inclusions in thin amorphous rims surrounding soil grains. Meteorites bombardment, especially micrometeorites bombardments could locally melt the lunar surface materials which saturat with hydrogen implanted from solar wind, and then reduce the ferrous minerals to metallic irons in agglutinatic glass. In previous studies, the size of np-Fe0 particles was found to be about 3~33 nm. But recent studies show that the np-Fe0 particles in agglutinatic glass are much larger, and most of them are about 50~200 nm in size and finely dispersed. Vapor deposition from micrometeorites bombardments and sputtering deposition from solar wind and cosmic rays produce np-Fe0 particles in the amorphous rims around the lunar grains surfaces. The size of np-Fe0 particles in the rim is ranged from several nanometers to tens of nanometers. Most of them are about 10nm. To investigate the relationship between np-Fe0 and various properties of lunar soil, simulation of the production process of np-Fe0 by space weathering is necessary because of the scarcity of lunar samples for research purpose and the complexity of the lunar soil. At present, there are three main methods to simulate the lunar soil analogs with the np-Fe0 particles. Laboratory simulation of np-Fe0 production in lunar space weathering deserves a more realistic approach to model the production process of np-Fe0 in lunar soil. Combining the formation and characteristics of np-Fe0 in lunar soil, we discuss the feasibility of two new experimental methods, which use microwave heating and magnetron sputtering to simulate np-Fe0 in the glass and on the grains surfaces respectively. Microwave heating can heat materials such as ilmenite which have a large dielectric loss to high temperature at a very fast heating rate, which might be a good method to simulate the production of np-Fe0 in the glass phase by reducing ferrous materials to metallic iron. Magnetron sputtering technique is a physical vapor deposition technique, which is similar to the deposition process of vapor deposition and sputtering deposition in lunar space weathering. The primary results of these two experimental simulations show that the characteristics of np-Fe0 produced in the simulations are in consistent with those of lunar samples documented in literature. Simulation of np-Fe0 is very important to remote sensing, lunar science and lunar exploration.

中图分类号: 

[1]Housley R M, Cirlin E H, Paton N E, et al. Solar wind and micrometeorite alteration of the lunar regolith[C]Proceedings of the Fifth Lunar Conference. Houston: Lunar and Planetary Institute, 1974.
[2]Pieters C M. Constraints on our view of the Moon II: Space weathering[C]Abstracts of Workshop on New Views of the Moon. Houston: Lunar and Planetary Institute, 1998.
[3]Noble S K. Space weathering on asteroids[C]Abstracts of Oxygen in Asteroids and Meterotites. Houston: Lunar and Planetary Institute, 2005.
[4]Ouyang Ziyuan. Introduction to Lunar Science[M]. Beijing: China Astronautics Publishing House, 2005.[欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社,2005.]
[5]Keller L P. Microstructural studies of space weathering effects in lunar materials[C]Abstracts of Solar System Remote Sensing Symposium. Houston: Lunar and Planetary Institute, 2002.
[6]Gault D E. Effects of microcratering on the lunar surface[C]Proceedings of the Third Lunar Science Conference. Houston: Lunar and Planetary Institute, 1972.
[7]Grieve R A F, Plant A G, Dence M R. Characteristics of impact melts in the lunar highlands[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1974.
[8]McKay D S, Fruland R M, Heiken G H. Grain size and the evolution of lunar soils[C]Proceedings of the Fifth Lunar Conference. Houston: Lunar and Planetary Institute, 1974.
[9]Cintala M J. Impactinduced thermal effects in the lunar and mercurian regoliths[J]. Journal of Geophysical Research,1992, 97(E1): 947-973.
[10]Taylor L A, Meek T T. Microwave sintering of lunar soil: Properties, theory, and practice[J]. Journal of Aerospace Engineering,2005, 18(3): 188-196.
[11]Mendell W W, McKay D S. A lunar soil evolution model[J]. The Moon,1975, 13: 285-292.
[12]Basu A, McKay D S, Morris R V, et al. Anatomy of individual agglutinates from a lunar highland soil[J]. Meteoritics and Planetary Science,1996, 31: 777-782.
[13]Basu A, Wing C. Exposure age and agglutinate content of lunar soils[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1977.
[14]Bibring J P, Borg J, Burlingame A L, et al. Solarwind and solarflare maturation of the lunar regolith[C]Proceedings of the Sixth Lunar Conference. Houston: Lunar and Planetary Institute, 1975.
[15]Basu A. Agglutinates and carbon accumulation in Apollo 17 lunar soils[C]Proceedings of the Seventh Lunar Science Conference. Houston: Lunar and Planetary Institute, 1976.
[16]Reames D V, Tylka A J, Ng C K. Solar energetic particles and space weathering[C]AIP Conference Proceedings. New York: American Institute of Physics, 2001[18]Basu A, McKay D S, Wentworth S J. A critical examination of relative concentrations of volumecorrelated and surfacecorrelated submicron globules of pure Fe0 in lunar soils
[17]Goswami J N, Lal D. Cosmic ray irradiation pattern at the Apollo 17 site: Implications to lunar regolith dynamics[C]Proceedings of the Fifth Lunar Science Conference. Houston: Lunar and Planetary Institute, 1974.
[18]Basu A, McKay D S, Wentworth S J. A critical examination of relative concentrations of volumecorrelated and surfacecorrelated submicron globules of pure Fe0 in lunar soils[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2003.
[19]Basu A. Nanophase Fe0 in lunar soils[J]. Journal of Earth System Science, 2005, 114 (3): 375-380.
[20]Martel L. New mineral proves an old idea about space weathering[EB/OL].http:www.psrd.hawaii.edu/July04/newMineral.html,2004.
[21]Hapke B, Cassidy W, Wells W. Effects of vaporphase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith[J]. The Moon, 1975, 13: 339-353.
[22]Keller L P, Clemett S J. Formation of nanophase iron in the lunar regolith[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2001.
[23]Pieters C M, Taylor L A, Noble S K, et al. Space weathering on airless bodies: Resolving a mystery with lunar samples[J]. Meteoritics and Planetary Science, 2000, 35: 1 101-1107.
[24]Morris R V. Origins and size distribution of metallic iron particles in the lunar regolith[C]Proceedings of the eleventh Lunar and Planetary Conference. Houston: Lunar and Planetary Institute, 1980.
[25]Morris R V. Origins and size distribution of metallic iron   in the lunar regolith[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1980.
[26]James C L, Letsinger S L, Basu A, et al. Nanophase iron globules in lunar soil[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2003.
[27]James C, Letsinger S, Basu A, et al. Size distribution of Fe0 globules in lunar agglutinitic glass[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2002.
[28]Housley R M, Grant R W, Paton N E. Origin and characteristics of excess Fe metal in lunar glass welded aggregates[C]Proceedings of the Fourth Lunar Science Conference. Houston: Lunar and Planetary Institute, 1973.
[29]Housley R M, Grant R W, Abdel Gawad M. Study of excess Fe metal in the lunar fines by magnetic separation, M ssbauer spectroscopy, and microscopic examination
[C]Proceedings of the Third Lunar Science Conference. Houston: Lunar and Planetary Institute, 1972.
[30]Keller L P, McKay D S. Discovery of vapor deposits in the lunar regolith[J]. Science,1993, 261(5 127): 1 305-1 307.
[31]Allen C C, Morris R V, McKay D S. An experimental analog to maturing lunar soil[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1996.[32]Taylor L A.Origin of usrface correlated and agglutinitic nanophase Fe0: A bedtime story for Bruce[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2002.
[33]Hapke B W, Cohen A J, Cassidy W A, et al. Solar radiation effects on the opitcal properties of Apollo 11 samples[C]Proceedings of the Apollo 11 Lunar Science Conference. Houston: Lunar and Planetary Institute, 1970.
[34]Paruso D, Cassidy W, Hapke B. An experimental investigation of fractionation by sputter deposition[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1978.
[35]Keller L P, McKay D S. Micrometersized glass spheres in Apollo 16 soil 61181: Implications for impace volatilization and condensation[C]Proceedings of Lunar and Planetary Science. Houston: Lunar and Planetary Institute, 1992.
[36]Christoffersen R, McKay D S. Grain rims on ilmenite in the lunar regolith: Comparison to vapor deposits on regolith silicates[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1994.
[37]Anand M, Taylor L A, Nazarov M A, et al. Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite[J]. PNAS,2004, 101(18): 6 847-6 851.
[38]Taylor L A, Patchen A, Taylor D S, et al. X-ray digital imaging petrography of lunar mare soils: Modal analyses of minerals and glasses[J]. Icarus, 1996, 124: 500-512.
[39]Keller L P, McKay D S. The nature and origin of rims on lunar soil grains[J]. Geochimica et Cosmochimica Acta,1997, 61(11): 2 331-2 341.
[40]Keller L P, McKay D S. Impact glasses and vapor condensates in Apollo 11 soil 10084[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1992.
[41]Christoffersen R, Keller L P, McKay D S. Microstructure, chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction[J]. Meteoritics and Planetary Science,1996, 31: 835-848.
[42]Wentworth S J, Keller L P, McKay D S, et al. Space weatherintg on the Moon: Patina on Apollo 17 samples 75075 and 76015[J]. Meteoritics and Planetary Science, 1999, 34: 593-603.
[43]Keller L P, Wentworth S J, McKay D S. Surface correlated nanophase iron metal in lunar soils: Petrography and space weathering effects[C]Abstracts of Workshop on New Views of the Moon. Houston: Lunar and Planetary Institute, 1998.
[44]Fallick A E, Pillinger C T, Stephenson A. Concerning the size distribution of ultrafine iron in lunar soil[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1983.
[45]Nagata T, Ishikawa Y, Kinoshita H, et al. Magnetic properties and natural remanent magnetization of lunar materials[C]Proceedings of the Apollo 11 Lunar Science Conference. Houston: Lunar and Planetary Institute, 1970.
[46]Gromme C S, Doell R R. Magnetic properties of Apollo 12 lunar samples 12052 and 12065[C]Proceedings of the Second Lunar Science Conference. Houston: Lunar and Planetary Institute, 1971.
[47]Bentley M S, Ball A J, Dyar M D, et al. Space weathering: Laboratory analyses and in-situ instrumentation[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2005.
[48]Rochette P, Gattacceca J, Ivanov A V, et al. Magnetic properties of lunar materials: Meteorites, luna and apollo returned samples[J]. Earth and Planetary Science Letters,2010, 292: 383-391.
[49]Tsay F, Chan S I, Manatt S L. Ferromagnetic resonance of lunar samples[J]. Geochimica et Cosmochimica Acta,1971, 35: 865-875.
[50]Lucey P G, Blewett D T, Taylor G J, et al. Imaging of lunar surface maturity[J]. Journal of Geophysical Research,2000, 105(E8): 20 377-20 386.
[51]Taylor L A, Pieters C M, Keller L P, et al. The effects of space weathering on Apollo 17 mare soils: Petrographic and chemical characterization[J]. Meteoritics and Planetary Science, 2001, 36: 285-299.
[52]Gold T, Bilson E, Baron R L. Chemical and optical properties at the Apollo 15 and 16 sites[C]Proceedings of the Eighth Lunar Science Conference. Houston: Lunar and Planetary Institute, 1977.
[53]Fischer E M, Pieters C M. Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods[J]. Icarus,1994,111: 475-488.
[54]Hapke B. Space weathering from Mercury to the asteroid belt[J]. Journal of Geophysical Research,2001, 106(E5): 10 039-10 073.
[55]Taylor L A, Pieters C, Keller L P, et al. Space weathering of lunar mare soils: New understanding of the effects on reflectance spectroscopy[C]Proceedings of Space. Johnson: ASEC, 2000.
[56]Pieters C M, Fischer E M, Rode O D, et al. Optical effects of space weathering on lunar soils and the role of the finest fraction[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1993.
[57]Noble S K, Pieters C M, Taylor L A, et al. Optical properties of the finest fraction of lunar soil: Implications for space weathering environments[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2000.
[58]Noble S K, Pieters C M, Taylor L A, et al. The optical properties of the finest fraction of lunar soil: Implications for space weathering[J]. Meteoritics and Planetary Science, 2001, 36: 31-42.
[59]Taylor L A, Morris R V, Keller L P, et al. Major contributions to spectral reflectance opacity by non-agglutinitic, surfacecorrelated nanophase iron[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2000.
[60]Taylor L A, Pieters C M, Keller L P, et al. Lunar mare soils: Space weathering and the major effects of surfacecorrelated nanophase Fe[J]. Journal of Geophysical Research,2001, 106(E11): 27 985-27 999.
[61]Noble S K, Pieters C M, Keller L P. An experimental approach to understanding the optical effects of space weathering[J]. Icarus, 2007, 192: 629-642.
[62]Lucey P G. Modeling the spectral effects of microscopic iron metal on glass and minerals[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 1995.
[63]Noble S K, Pieters C M, Keller L P. The optical properties of nanophase iron: Inverstigation of a space weathering analog[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2003.
[64]Liu Y, Taylor L A, Thompson J R, et al. Unique properties of lunar impact glass: Nanophase metallic Fe synthesis[J]. American Mineralogist, 2007, 92(8/9): 1 420-1 427.
[65]Allen C C, Morris R V, Lauer H V, et al. Microscopic iron metal on glass and minerals   a tool for studying regolith maturity[J]. Icarus,1993, 104: 291-300.
[66]Kurahashi E, Yamanaka C, Nakamura K, et al. Laboratory simulation of space weathering: ESR measurements of nanophase metallic iron in laser irradiated materials[J]. Earth Planets Space, 2002, 54: e5-e7.
[67]Sasaki S, Kurahashi E, Nakamura K, et al. Laboratory simulation of space weathering: TEM and ESR confirmation of nanophase iron particles and change of optical properties of regolith[C]Proceedings of Asteroids. Netherlands: ESA, 2002.
[68]Sasaki S, Kurahashi E, Yamanaka C, et al. Laboratory simulation of space weathering: Changes of optical properties and TEM/ESR confirmation of nanophase metallica iron[J]. Advance in Space Reseorch,2003, 31(12): 2 537-2 542.
[69]Sasaki S, Nakamura K, Hamabe Y, et al. Production of iron nanoparticles by laser irradiation in a simulation of lunar like space weathering[J]. Nature,2001,410: 555-557.
[70]Yamada M, Sasaki S, Nagahara H, et al. Simulation of space weathering of planetforming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples[J]. Earth Planets Space, 1999, 51: 1 255-1 265.
[71]Sasaki S, Hiroi T, Nakamura K, et al. Simulation of space weathering by nanosecond pulse laser heating: Dependence on mineral composition, weathering trend of asteroids and discovery of nanophase iron particles[J]. Advance in Space Research, 2002, 29(5): 783-788.
[72]Zheng Yongchun. Development of Lunar Soil Simulants and Characteristics of Microwave Radiation of Lunar Regolith[D]. Guiyang: Institute of Geochemistry Chinese Academy of Sciences, 2005.[郑永春. 模拟月壤研制与月壤的微波辐射特性研究[D]. 贵阳:中国科学院地球化学研究所, 2005.]
[73]Tang H, Wang S J, Li X Y. Expertimental simulation of nanophase iron production in lunar space weathering[C]Abstracts of the Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2010.
[74]Kelly R M, Rowson N A. Microwave reduction of oxidised ilmenite concentrates[J]. Minerals Engineering,1995, 8(11): 1 427-1 438.
[75]Hutson L M. Notes on lunar ilmenite[J]. NASA Space Engineering Research Center for Utilization of Local Planetary Resources,1989, N91-25203: 17-25.
[76]Kelly P J, Arnell R D. Magnetron sputtering: A review of recent developments and applications[J]. Vacuum,2000, 56: 159-172.

[1] 刘清超, 陈晓东, 徐建桥, 孙和平. 潮汐摩擦对月球轨道与地球自转影响的研究综述[J]. 地球科学进展, 2021, 36(5): 472-479.
[2] 程维明, 刘樯漪, 王娇, 高文信, 刘建忠. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9): 885-897.
[3] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[4] 李阳,李雄耀,王世杰,唐红,李世杰. 月壤颗粒微观环带的太空风化成因[J]. 地球科学进展, 2012, 27(6): 603-612.
[5] 于雯, 李雄耀, 王世杰. 月球探测中月面热环境影响的研究现状[J]. 地球科学进展, 2012, 27(12): 1337-1343.
[6] 李雄耀,王世杰,程安云. 月球表面温度物理模型研究现状[J]. 地球科学进展, 2007, 22(5): 480-485.
[7] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展, 2004, 19(3): 351-358.
[8] 欧阳自远. 月球地质学[J]. 地球科学进展, 1994, 9(2): 80-81.
阅读次数
全文


摘要